Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndomgmid Structured version   Visualization version   GIF version

Theorem mndomgmid 37837
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Assertion
Ref Expression
mndomgmid (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))

Proof of Theorem mndomgmid
StepHypRef Expression
1 mndoismgmOLD 37836 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ Magma)
2 mndoisexid 37835 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ ExId )
31, 2elind 4180 1 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cin 3930   ExId cexid 37810  Magmacmagm 37814  MndOpcmndo 37832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-in 3938  df-sgrOLD 37827  df-mndo 37833
This theorem is referenced by:  ismndo2  37840  rngoidmlem  37902  isdrngo2  37924
  Copyright terms: Public domain W3C validator