![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndomgmid | Structured version Visualization version GIF version |
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mndomgmid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndoismgmOLD 37830 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | |
2 | mndoisexid 37829 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | |
3 | 1, 2 | elind 4223 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3975 ExId cexid 37804 Magmacmagm 37808 MndOpcmndo 37826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-sgrOLD 37821 df-mndo 37827 |
This theorem is referenced by: ismndo2 37834 rngoidmlem 37896 isdrngo2 37918 |
Copyright terms: Public domain | W3C validator |