Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndomgmid Structured version   Visualization version   GIF version

Theorem mndomgmid 35956
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Assertion
Ref Expression
mndomgmid (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))

Proof of Theorem mndomgmid
StepHypRef Expression
1 mndoismgmOLD 35955 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ Magma)
2 mndoisexid 35954 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ ExId )
31, 2elind 4124 1 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3882   ExId cexid 35929  Magmacmagm 35933  MndOpcmndo 35951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-sgrOLD 35946  df-mndo 35952
This theorem is referenced by:  ismndo2  35959  rngoidmlem  36021  isdrngo2  36043
  Copyright terms: Public domain W3C validator