Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndomgmid Structured version   Visualization version   GIF version

Theorem mndomgmid 37934
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Assertion
Ref Expression
mndomgmid (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))

Proof of Theorem mndomgmid
StepHypRef Expression
1 mndoismgmOLD 37933 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ Magma)
2 mndoisexid 37932 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ ExId )
31, 2elind 4149 1 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cin 3897   ExId cexid 37907  Magmacmagm 37911  MndOpcmndo 37929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905  df-sgrOLD 37924  df-mndo 37930
This theorem is referenced by:  ismndo2  37937  rngoidmlem  37999  isdrngo2  38021
  Copyright terms: Public domain W3C validator