| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndomgmid | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mndomgmid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndoismgmOLD 37933 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | |
| 2 | mndoisexid 37932 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | |
| 3 | 1, 2 | elind 4149 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∩ cin 3897 ExId cexid 37907 Magmacmagm 37911 MndOpcmndo 37929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-sgrOLD 37924 df-mndo 37930 |
| This theorem is referenced by: ismndo2 37937 rngoidmlem 37999 isdrngo2 38021 |
| Copyright terms: Public domain | W3C validator |