| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndomgmid | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mndomgmid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndoismgmOLD 37916 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | |
| 2 | mndoisexid 37915 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | |
| 3 | 1, 2 | elind 4150 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3901 ExId cexid 37890 Magmacmagm 37894 MndOpcmndo 37912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-sgrOLD 37907 df-mndo 37913 |
| This theorem is referenced by: ismndo2 37920 rngoidmlem 37982 isdrngo2 38004 |
| Copyright terms: Public domain | W3C validator |