| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndomgmid | Structured version Visualization version GIF version | ||
| Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mndomgmid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndoismgmOLD 37871 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | |
| 2 | mndoisexid 37870 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | |
| 3 | 1, 2 | elind 4166 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 ExId cexid 37845 Magmacmagm 37849 MndOpcmndo 37867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-sgrOLD 37862 df-mndo 37868 |
| This theorem is referenced by: ismndo2 37875 rngoidmlem 37937 isdrngo2 37959 |
| Copyright terms: Public domain | W3C validator |