Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndomgmid Structured version   Visualization version   GIF version

Theorem mndomgmid 36029
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Assertion
Ref Expression
mndomgmid (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))

Proof of Theorem mndomgmid
StepHypRef Expression
1 mndoismgmOLD 36028 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ Magma)
2 mndoisexid 36027 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ ExId )
31, 2elind 4128 1 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cin 3886   ExId cexid 36002  Magmacmagm 36006  MndOpcmndo 36024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-sgrOLD 36019  df-mndo 36025
This theorem is referenced by:  ismndo2  36032  rngoidmlem  36094  isdrngo2  36116
  Copyright terms: Public domain W3C validator