Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mo | Structured version Visualization version GIF version |
Description: Equivalent definitions of "there exists at most one". (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 2-Dec-2018.) |
Ref | Expression |
---|---|
mo.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo.nf | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | mof 2563 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
3 | 1 | mo3 2564 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
4 | 2, 3 | bitr3i 276 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 [wsb 2067 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 |
This theorem is referenced by: bj-snsetex 35153 |
Copyright terms: Public domain | W3C validator |