Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euan | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 24-Dec-2018.) |
Ref | Expression |
---|---|
moanim.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
euan | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2577 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | |
2 | moanim.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | simpl 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 2, 3 | exlimi 2210 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → 𝜑) |
6 | ibar 529 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
7 | 2, 6 | eubid 2587 | . . . 4 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∧ 𝜓))) |
8 | 7 | biimprcd 249 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (𝜑 → ∃!𝑥𝜓)) |
9 | 5, 8 | jcai 517 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (𝜑 ∧ ∃!𝑥𝜓)) |
10 | 7 | biimpa 477 | . 2 ⊢ ((𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∧ 𝜓)) |
11 | 9, 10 | impbii 208 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 Ⅎwnf 1786 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: 2eu7 2659 2eu8 2660 |
Copyright terms: Public domain | W3C validator |