MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euan Structured version   Visualization version   GIF version

Theorem euan 2705
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 24-Dec-2018.)
Hypothesis
Ref Expression
moanim.1 𝑥𝜑
Assertion
Ref Expression
euan (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))

Proof of Theorem euan
StepHypRef Expression
1 euex 2667 . . . 4 (∃!𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓))
2 moanim.1 . . . . 5 𝑥𝜑
3 simpl 470 . . . . 5 ((𝜑𝜓) → 𝜑)
42, 3exlimi 2254 . . . 4 (∃𝑥(𝜑𝜓) → 𝜑)
51, 4syl 17 . . 3 (∃!𝑥(𝜑𝜓) → 𝜑)
6 ibar 520 . . . . 5 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
72, 6eubid 2662 . . . 4 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑𝜓)))
87biimprcd 241 . . 3 (∃!𝑥(𝜑𝜓) → (𝜑 → ∃!𝑥𝜓))
95, 8jcai 508 . 2 (∃!𝑥(𝜑𝜓) → (𝜑 ∧ ∃!𝑥𝜓))
107biimpa 464 . 2 ((𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
119, 10impbii 200 1 (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  wex 1859  wnf 1863  ∃!weu 2641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642
This theorem is referenced by:  euanv  2709  2eu7  2734  2eu8  2735
  Copyright terms: Public domain W3C validator