Proof of Theorem reuxfrdf
| Step | Hyp | Ref
| Expression |
| 1 | | reuxfrdf.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 2 | | rmoan 3722 |
. . . . . . 7
⊢
(∃*𝑦 ∈
𝐶 𝑥 = 𝐴 → ∃*𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) |
| 4 | | ancom 460 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝜓)) |
| 5 | 4 | rmobii 3367 |
. . . . . 6
⊢
(∃*𝑦 ∈
𝐶 (𝜓 ∧ 𝑥 = 𝐴) ↔ ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
| 6 | 3, 5 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
| 7 | 6 | ralrimiva 3132 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
| 8 | | df-rmo 3359 |
. . . . . 6
⊢
(∃*𝑦 ∈
𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
| 9 | 8 | ralbii 3082 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
| 10 | | df-ral 3052 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑥(𝑥 ∈ 𝐵 → ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 11 | | reuxfrdf.0 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐵 |
| 12 | 11 | nfcri 2890 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐵 |
| 13 | 12 | moanim 2619 |
. . . . . . . 8
⊢
(∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑥 ∈ 𝐵 → ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 14 | 13 | albii 1819 |
. . . . . . 7
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∀𝑥(𝑥 ∈ 𝐵 → ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 15 | 10, 14 | bitr4i 278 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 16 | | 2euswapv 2629 |
. . . . . . 7
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑥∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → ∃!𝑦∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))))) |
| 17 | | df-reu 3360 |
. . . . . . . 8
⊢
(∃!𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
| 18 | 12 | r19.41 3246 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐶 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
| 19 | | ancom 460 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
| 20 | 19 | rexbii 3083 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐶 (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦 ∈ 𝐶 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
| 21 | | ancom 460 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
| 22 | 18, 20, 21 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐶 (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
| 23 | | df-rex 3061 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐶 (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 24 | 22, 23 | bitr3i 277 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 25 | | an12 645 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 26 | 25 | exbii 1848 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 27 | 24, 26 | bitri 275 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 28 | 27 | eubii 2584 |
. . . . . . . 8
⊢
(∃!𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑥∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 29 | 17, 28 | bitri 275 |
. . . . . . 7
⊢
(∃!𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑥∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 30 | | df-reu 3360 |
. . . . . . . 8
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 31 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 |
| 32 | 31 | r19.41 3246 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐵 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
| 33 | | ancom 460 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
| 34 | 33 | rexbii 3083 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥 ∈ 𝐵 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
| 35 | | ancom 460 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
| 36 | 32, 34, 35 | 3bitr4i 303 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 37 | | df-rex 3061 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 38 | 36, 37 | bitr3i 277 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 39 | 38 | eubii 2584 |
. . . . . . . 8
⊢
(∃!𝑦(𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑦∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 40 | 30, 39 | bitri 275 |
. . . . . . 7
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 41 | 16, 29, 40 | 3imtr4g 296 |
. . . . . 6
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 42 | 15, 41 | sylbi 217 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 43 | 9, 42 | sylbi 217 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 44 | 7, 43 | syl 17 |
. . 3
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 45 | | df-ral 3052 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐶 ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 46 | | moanimv 2618 |
. . . . . . 7
⊢
(∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 47 | 46 | albii 1819 |
. . . . . 6
⊢
(∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 48 | 45, 47 | bitr4i 278 |
. . . . 5
⊢
(∀𝑦 ∈
𝐶 ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 49 | | 2euswapv 2629 |
. . . . . 6
⊢
(∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑦∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → ∃!𝑥∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))))) |
| 50 | | r19.42v 3176 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 51 | 50, 37 | bitr3i 277 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 52 | | an12 645 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 53 | 52 | exbii 1848 |
. . . . . . . . 9
⊢
(∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 54 | 51, 53 | bitri 275 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 55 | 54 | eubii 2584 |
. . . . . . 7
⊢
(∃!𝑦(𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑦∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 56 | 30, 55 | bitri 275 |
. . . . . 6
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 57 | 24 | eubii 2584 |
. . . . . . 7
⊢
(∃!𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑥∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 58 | 17, 57 | bitri 275 |
. . . . . 6
⊢
(∃!𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑥∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
| 59 | 49, 56, 58 | 3imtr4g 296 |
. . . . 5
⊢
(∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
| 60 | 48, 59 | sylbi 217 |
. . . 4
⊢
(∀𝑦 ∈
𝐶 ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) → (∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
| 61 | | moeq 3690 |
. . . . . . 7
⊢
∃*𝑥 𝑥 = 𝐴 |
| 62 | 61 | moani 2552 |
. . . . . 6
⊢
∃*𝑥((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) |
| 63 | | ancom 460 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
| 64 | | an12 645 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
| 65 | 63, 64 | bitri 275 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
| 66 | 65 | mobii 2547 |
. . . . . 6
⊢
(∃*𝑥((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
| 67 | 62, 66 | mpbi 230 |
. . . . 5
⊢
∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) |
| 68 | 67 | a1i 11 |
. . . 4
⊢ (𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
| 69 | 60, 68 | mprg 3057 |
. . 3
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
| 70 | 44, 69 | impbid1 225 |
. 2
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
| 71 | | reuxfrdf.1 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| 72 | | biidd 262 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜓)) |
| 73 | 72 | ceqsrexv 3634 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ 𝜓)) |
| 74 | 71, 73 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ 𝜓)) |
| 75 | 74 | reubidva 3375 |
. 2
⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |
| 76 | 70, 75 | bitrd 279 |
1
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |