Proof of Theorem reuxfrdf
Step | Hyp | Ref
| Expression |
1 | | reuxfrdf.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
2 | | rmoan 3674 |
. . . . . . 7
⊢
(∃*𝑦 ∈
𝐶 𝑥 = 𝐴 → ∃*𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 (𝜓 ∧ 𝑥 = 𝐴)) |
4 | | ancom 461 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝜓)) |
5 | 4 | rmobii 3331 |
. . . . . 6
⊢
(∃*𝑦 ∈
𝐶 (𝜓 ∧ 𝑥 = 𝐴) ↔ ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
6 | 3, 5 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
7 | 6 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
8 | | df-rmo 3071 |
. . . . . 6
⊢
(∃*𝑦 ∈
𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
9 | 8 | ralbii 3092 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
10 | | df-ral 3069 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑥(𝑥 ∈ 𝐵 → ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
11 | | reuxfrdf.0 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐵 |
12 | 11 | nfcri 2894 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐵 |
13 | 12 | moanim 2622 |
. . . . . . . 8
⊢
(∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑥 ∈ 𝐵 → ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
14 | 13 | albii 1822 |
. . . . . . 7
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∀𝑥(𝑥 ∈ 𝐵 → ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
15 | 10, 14 | bitr4i 277 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
16 | | 2euswapv 2632 |
. . . . . . 7
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑥∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → ∃!𝑦∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))))) |
17 | | df-reu 3072 |
. . . . . . . 8
⊢
(∃!𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
18 | 12 | r19.41 3277 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐶 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
19 | | ancom 461 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
20 | 19 | rexbii 3181 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐶 (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦 ∈ 𝐶 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
21 | | ancom 461 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑥 ∈ 𝐵)) |
22 | 18, 20, 21 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐶 (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
23 | | df-rex 3070 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐶 (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
24 | 22, 23 | bitr3i 276 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
25 | | an12 642 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
26 | 25 | exbii 1850 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
27 | 24, 26 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
28 | 27 | eubii 2585 |
. . . . . . . 8
⊢
(∃!𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑥∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
29 | 17, 28 | bitri 274 |
. . . . . . 7
⊢
(∃!𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑥∃𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
30 | | df-reu 3072 |
. . . . . . . 8
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
31 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 |
32 | 31 | r19.41 3277 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐵 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
33 | | ancom 461 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
34 | 33 | rexbii 3181 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥 ∈ 𝐵 ((𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
35 | | ancom 461 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ∧ 𝑦 ∈ 𝐶)) |
36 | 32, 34, 35 | 3bitr4i 303 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
37 | | df-rex 3070 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
38 | 36, 37 | bitr3i 276 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
39 | 38 | eubii 2585 |
. . . . . . . 8
⊢
(∃!𝑦(𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑦∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
40 | 30, 39 | bitri 274 |
. . . . . . 7
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
41 | 16, 29, 40 | 3imtr4g 296 |
. . . . . 6
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
42 | 15, 41 | sylbi 216 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
43 | 9, 42 | sylbi 216 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
44 | 7, 43 | syl 17 |
. . 3
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
45 | | df-ral 3069 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐶 ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
46 | | moanimv 2621 |
. . . . . . 7
⊢
(∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
47 | 46 | albii 1822 |
. . . . . 6
⊢
(∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
48 | 45, 47 | bitr4i 277 |
. . . . 5
⊢
(∀𝑦 ∈
𝐶 ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
49 | | 2euswapv 2632 |
. . . . . 6
⊢
(∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑦∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → ∃!𝑥∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))))) |
50 | | r19.42v 3279 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐵 (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
51 | 50, 37 | bitr3i 276 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
52 | | an12 642 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
53 | 52 | exbii 1850 |
. . . . . . . . 9
⊢
(∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) ↔ ∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
54 | 51, 53 | bitri 274 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
55 | 54 | eubii 2585 |
. . . . . . 7
⊢
(∃!𝑦(𝑦 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑦∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
56 | 30, 55 | bitri 274 |
. . . . . 6
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦∃𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
57 | 24 | eubii 2585 |
. . . . . . 7
⊢
(∃!𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) ↔ ∃!𝑥∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
58 | 17, 57 | bitri 274 |
. . . . . 6
⊢
(∃!𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑥∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)))) |
59 | 49, 56, 58 | 3imtr4g 296 |
. . . . 5
⊢
(∀𝑦∃*𝑥(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) → (∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
60 | 48, 59 | sylbi 216 |
. . . 4
⊢
(∀𝑦 ∈
𝐶 ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) → (∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓))) |
61 | | moeq 3642 |
. . . . . . 7
⊢
∃*𝑥 𝑥 = 𝐴 |
62 | 61 | moani 2553 |
. . . . . 6
⊢
∃*𝑥((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) |
63 | | ancom 461 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
64 | | an12 642 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
65 | 63, 64 | bitri 274 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
66 | 65 | mobii 2548 |
. . . . . 6
⊢
(∃*𝑥((𝑥 ∈ 𝐵 ∧ 𝜓) ∧ 𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
67 | 62, 66 | mpbi 229 |
. . . . 5
⊢
∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓)) |
68 | 67 | a1i 11 |
. . . 4
⊢ (𝑦 ∈ 𝐶 → ∃*𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
69 | 60, 68 | mprg 3078 |
. . 3
⊢
(∃!𝑦 ∈
𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) → ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓)) |
70 | 44, 69 | impbid1 224 |
. 2
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓))) |
71 | | reuxfrdf.1 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
72 | | biidd 261 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜓)) |
73 | 72 | ceqsrexv 3585 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ 𝜓)) |
74 | 71, 73 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ 𝜓)) |
75 | 74 | reubidva 3322 |
. 2
⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |
76 | 70, 75 | bitrd 278 |
1
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |