MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanmo Structured version   Visualization version   GIF version

Theorem moanmo 2624
Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moanmo ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)

Proof of Theorem moanmo
StepHypRef Expression
1 id 22 . . 3 (∃*𝑥𝜑 → ∃*𝑥𝜑)
2 nfmo1 2557 . . . 4 𝑥∃*𝑥𝜑
32moanim 2622 . . 3 (∃*𝑥(∃*𝑥𝜑𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑))
41, 3mpbir 230 . 2 ∃*𝑥(∃*𝑥𝜑𝜑)
5 ancom 460 . . 3 ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑𝜑))
65mobii 2548 . 2 (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑𝜑))
74, 6mpbir 230 1 ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-mo 2540
This theorem is referenced by:  moaneu  2625
  Copyright terms: Public domain W3C validator