| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moanmo | Structured version Visualization version GIF version | ||
| Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.) |
| Ref | Expression |
|---|---|
| moanmo | ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
| 2 | nfmo1 2556 | . . . 4 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
| 3 | 2 | moanim 2619 | . . 3 ⊢ (∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) |
| 5 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑 ∧ 𝜑)) | |
| 6 | 5 | mobii 2547 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑)) |
| 7 | 4, 6 | mpbir 231 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃*wmo 2537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2539 |
| This theorem is referenced by: moaneu 2622 |
| Copyright terms: Public domain | W3C validator |