|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > moanmo | Structured version Visualization version GIF version | ||
| Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| moanmo | ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
| 2 | nfmo1 2557 | . . . 4 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
| 3 | 2 | moanim 2620 | . . 3 ⊢ (∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑)) | 
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) | 
| 5 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑 ∧ 𝜑)) | |
| 6 | 5 | mobii 2548 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑)) | 
| 7 | 4, 6 | mpbir 231 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃*wmo 2538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-mo 2540 | 
| This theorem is referenced by: moaneu 2623 | 
| Copyright terms: Public domain | W3C validator |