MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanmo Structured version   Visualization version   GIF version

Theorem moanmo 2651
Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moanmo ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)

Proof of Theorem moanmo
StepHypRef Expression
1 id 22 . . 3 (∃*𝑥𝜑 → ∃*𝑥𝜑)
2 nfmo1 2566 . . . 4 𝑥∃*𝑥𝜑
32moanim 2648 . . 3 (∃*𝑥(∃*𝑥𝜑𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑))
41, 3mpbir 223 . 2 ∃*𝑥(∃*𝑥𝜑𝜑)
5 ancom 453 . . 3 ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑𝜑))
65mobii 2556 . 2 (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑𝜑))
74, 6mpbir 223 1 ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  ∃*wmo 2542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-10 2077  ax-11 2091  ax-12 2104
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-mo 2544
This theorem is referenced by:  moaneu  2652
  Copyright terms: Public domain W3C validator