Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moaneu | Structured version Visualization version GIF version |
Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
Ref | Expression |
---|---|
moaneu | ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanmo 2624 | . 2 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) | |
2 | eumo 2578 | . . . 4 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
3 | 2 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥𝜑) → (𝜑 ∧ ∃*𝑥𝜑)) |
4 | 3 | moimi 2545 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) → ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |