| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moaneu | Structured version Visualization version GIF version | ||
| Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| moaneu | ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moanmo 2621 | . 2 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) | |
| 2 | eumo 2577 | . . . 4 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥𝜑) → (𝜑 ∧ ∃*𝑥𝜑)) |
| 4 | 3 | moimi 2544 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) → ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃*wmo 2537 ∃!weu 2567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |