MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom4 Structured version   Visualization version   GIF version

Theorem brdom4 10570
Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom4 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom4
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 10568 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 mormo 3385 . . . . . . 7 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦𝐴 𝑥𝑓𝑦)
43alimi 1811 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦)
5 alral 3075 . . . . . 6 (∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
64, 5syl 17 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
76anim1i 615 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
87eximi 1835 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
92, 8sylbi 217 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
10 inss2 4238 . . . . . . . . . . . . . . 15 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
11 dmss 5913 . . . . . . . . . . . . . . 15 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
1210, 11ax-mp 5 . . . . . . . . . . . . . 14 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
13 dmxpss 6191 . . . . . . . . . . . . . 14 dom (𝐵 × 𝐴) ⊆ 𝐵
1412, 13sstri 3993 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1514sseli 3979 . . . . . . . . . . . 12 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
1610rnssi 5951 . . . . . . . . . . . . . . . . 17 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ ran (𝐵 × 𝐴)
17 rnxpss 6192 . . . . . . . . . . . . . . . . 17 ran (𝐵 × 𝐴) ⊆ 𝐴
1816, 17sstri 3993 . . . . . . . . . . . . . . . 16 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐴
1918sseli 3979 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) → 𝑦𝐴)
20 inss1 4237 . . . . . . . . . . . . . . . 16 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
2120ssbri 5188 . . . . . . . . . . . . . . 15 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
2219, 21anim12i 613 . . . . . . . . . . . . . 14 ((𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦) → (𝑦𝐴𝑥𝑓𝑦))
2322moimi 2545 . . . . . . . . . . . . 13 (∃*𝑦(𝑦𝐴𝑥𝑓𝑦) → ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
24 df-rmo 3380 . . . . . . . . . . . . 13 (∃*𝑦𝐴 𝑥𝑓𝑦 ↔ ∃*𝑦(𝑦𝐴𝑥𝑓𝑦))
25 df-rmo 3380 . . . . . . . . . . . . 13 (∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦 ↔ ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2623, 24, 253imtr4i 292 . . . . . . . . . . . 12 (∃*𝑦𝐴 𝑥𝑓𝑦 → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
2715, 26imim12i 62 . . . . . . . . . . 11 ((𝑥𝐵 → ∃*𝑦𝐴 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2827ralimi2 3078 . . . . . . . . . 10 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
29 relinxp 5824 . . . . . . . . . 10 Rel (𝑓 ∩ (𝐵 × 𝐴))
3028, 29jctil 519 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
31 dffun9 6595 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
3230, 31sylibr 234 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
3332funfnd 6597 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
34 rninxp 6199 . . . . . . . 8 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3534biimpri 228 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
3633, 35anim12i 613 . . . . . 6 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
37 df-fo 6567 . . . . . 6 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
3836, 37sylibr 234 . . . . 5 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
39 vex 3484 . . . . . . . 8 𝑓 ∈ V
4039inex1 5317 . . . . . . 7 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4140dmex 7931 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4241fodom 10563 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
4338, 42syl 17 . . . 4 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
44 ssdomg 9040 . . . . 5 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
451, 14, 44mp2 9 . . . 4 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
46 domtr 9047 . . . 4 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
4743, 45, 46sylancl 586 . . 3 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
4847exlimiv 1930 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
499, 48impbii 209 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃*wmo 2538  wral 3061  wrex 3070  ∃*wrmo 3379  Vcvv 3480  cin 3950  wss 3951   class class class wbr 5143   × cxp 5683  dom cdm 5685  ran crn 5686  Rel wrel 5690  Fun wfun 6555   Fn wfn 6556  ontowfo 6559  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-card 9979  df-acn 9982  df-ac 10156
This theorem is referenced by:  brdom7disj  10571
  Copyright terms: Public domain W3C validator