MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom4 Structured version   Visualization version   GIF version

Theorem brdom4 10421
Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom4 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom4
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 10419 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 mormo 3351 . . . . . . 7 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦𝐴 𝑥𝑓𝑦)
43alimi 1812 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦)
5 alral 3061 . . . . . 6 (∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
64, 5syl 17 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
76anim1i 615 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
87eximi 1836 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
92, 8sylbi 217 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
10 inss2 4185 . . . . . . . . . . . . . . 15 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
11 dmss 5841 . . . . . . . . . . . . . . 15 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
1210, 11ax-mp 5 . . . . . . . . . . . . . 14 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
13 dmxpss 6118 . . . . . . . . . . . . . 14 dom (𝐵 × 𝐴) ⊆ 𝐵
1412, 13sstri 3939 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1514sseli 3925 . . . . . . . . . . . 12 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
1610rnssi 5879 . . . . . . . . . . . . . . . . 17 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ ran (𝐵 × 𝐴)
17 rnxpss 6119 . . . . . . . . . . . . . . . . 17 ran (𝐵 × 𝐴) ⊆ 𝐴
1816, 17sstri 3939 . . . . . . . . . . . . . . . 16 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐴
1918sseli 3925 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) → 𝑦𝐴)
20 inss1 4184 . . . . . . . . . . . . . . . 16 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
2120ssbri 5134 . . . . . . . . . . . . . . 15 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
2219, 21anim12i 613 . . . . . . . . . . . . . 14 ((𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦) → (𝑦𝐴𝑥𝑓𝑦))
2322moimi 2540 . . . . . . . . . . . . 13 (∃*𝑦(𝑦𝐴𝑥𝑓𝑦) → ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
24 df-rmo 3346 . . . . . . . . . . . . 13 (∃*𝑦𝐴 𝑥𝑓𝑦 ↔ ∃*𝑦(𝑦𝐴𝑥𝑓𝑦))
25 df-rmo 3346 . . . . . . . . . . . . 13 (∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦 ↔ ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2623, 24, 253imtr4i 292 . . . . . . . . . . . 12 (∃*𝑦𝐴 𝑥𝑓𝑦 → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
2715, 26imim12i 62 . . . . . . . . . . 11 ((𝑥𝐵 → ∃*𝑦𝐴 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2827ralimi2 3064 . . . . . . . . . 10 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
29 relinxp 5753 . . . . . . . . . 10 Rel (𝑓 ∩ (𝐵 × 𝐴))
3028, 29jctil 519 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
31 dffun9 6510 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
3230, 31sylibr 234 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
3332funfnd 6512 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
34 rninxp 6126 . . . . . . . 8 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3534biimpri 228 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
3633, 35anim12i 613 . . . . . 6 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
37 df-fo 6487 . . . . . 6 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
3836, 37sylibr 234 . . . . 5 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
39 vex 3440 . . . . . . . 8 𝑓 ∈ V
4039inex1 5253 . . . . . . 7 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4140dmex 7839 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4241fodom 10414 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
4338, 42syl 17 . . . 4 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
44 ssdomg 8922 . . . . 5 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
451, 14, 44mp2 9 . . . 4 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
46 domtr 8929 . . . 4 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
4743, 45, 46sylancl 586 . . 3 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
4847exlimiv 1931 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
499, 48impbii 209 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  wral 3047  wrex 3056  ∃*wrmo 3345  Vcvv 3436  cin 3896  wss 3897   class class class wbr 5089   × cxp 5612  dom cdm 5614  ran crn 5615  Rel wrel 5619  Fun wfun 6475   Fn wfn 6476  ontowfo 6479  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9832  df-acn 9835  df-ac 10007
This theorem is referenced by:  brdom7disj  10422
  Copyright terms: Public domain W3C validator