MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom4 Structured version   Visualization version   GIF version

Theorem brdom4 10599
Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom4 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom4
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 10597 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 mormo 3393 . . . . . . 7 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦𝐴 𝑥𝑓𝑦)
43alimi 1809 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦)
5 alral 3081 . . . . . 6 (∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
64, 5syl 17 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
76anim1i 614 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
87eximi 1833 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
92, 8sylbi 217 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
10 inss2 4259 . . . . . . . . . . . . . . 15 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
11 dmss 5927 . . . . . . . . . . . . . . 15 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
1210, 11ax-mp 5 . . . . . . . . . . . . . 14 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
13 dmxpss 6202 . . . . . . . . . . . . . 14 dom (𝐵 × 𝐴) ⊆ 𝐵
1412, 13sstri 4018 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1514sseli 4004 . . . . . . . . . . . 12 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
1610rnssi 5965 . . . . . . . . . . . . . . . . 17 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ ran (𝐵 × 𝐴)
17 rnxpss 6203 . . . . . . . . . . . . . . . . 17 ran (𝐵 × 𝐴) ⊆ 𝐴
1816, 17sstri 4018 . . . . . . . . . . . . . . . 16 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐴
1918sseli 4004 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) → 𝑦𝐴)
20 inss1 4258 . . . . . . . . . . . . . . . 16 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
2120ssbri 5211 . . . . . . . . . . . . . . 15 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
2219, 21anim12i 612 . . . . . . . . . . . . . 14 ((𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦) → (𝑦𝐴𝑥𝑓𝑦))
2322moimi 2548 . . . . . . . . . . . . 13 (∃*𝑦(𝑦𝐴𝑥𝑓𝑦) → ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
24 df-rmo 3388 . . . . . . . . . . . . 13 (∃*𝑦𝐴 𝑥𝑓𝑦 ↔ ∃*𝑦(𝑦𝐴𝑥𝑓𝑦))
25 df-rmo 3388 . . . . . . . . . . . . 13 (∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦 ↔ ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2623, 24, 253imtr4i 292 . . . . . . . . . . . 12 (∃*𝑦𝐴 𝑥𝑓𝑦 → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
2715, 26imim12i 62 . . . . . . . . . . 11 ((𝑥𝐵 → ∃*𝑦𝐴 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2827ralimi2 3084 . . . . . . . . . 10 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
29 relinxp 5838 . . . . . . . . . 10 Rel (𝑓 ∩ (𝐵 × 𝐴))
3028, 29jctil 519 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
31 dffun9 6607 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
3230, 31sylibr 234 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
3332funfnd 6609 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
34 rninxp 6210 . . . . . . . 8 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3534biimpri 228 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
3633, 35anim12i 612 . . . . . 6 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
37 df-fo 6579 . . . . . 6 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
3836, 37sylibr 234 . . . . 5 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
39 vex 3492 . . . . . . . 8 𝑓 ∈ V
4039inex1 5335 . . . . . . 7 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4140dmex 7949 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4241fodom 10592 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
4338, 42syl 17 . . . 4 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
44 ssdomg 9060 . . . . 5 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
451, 14, 44mp2 9 . . . 4 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
46 domtr 9067 . . . 4 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
4743, 45, 46sylancl 585 . . 3 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
4847exlimiv 1929 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
499, 48impbii 209 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  wral 3067  wrex 3076  ∃*wrmo 3387  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  ontowfo 6571  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by:  brdom7disj  10600
  Copyright terms: Public domain W3C validator