MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom4 Structured version   Visualization version   GIF version

Theorem brdom4 9950
Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom4 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom4
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 9948 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 mormo 3412 . . . . . . 7 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦𝐴 𝑥𝑓𝑦)
43alimi 1813 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦)
5 alral 3149 . . . . . 6 (∀𝑥∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
64, 5syl 17 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦)
76anim1i 617 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
87eximi 1836 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
92, 8sylbi 220 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
10 inss2 4191 . . . . . . . . . . . . . . 15 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
11 dmss 5758 . . . . . . . . . . . . . . 15 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
1210, 11ax-mp 5 . . . . . . . . . . . . . 14 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
13 dmxpss 6015 . . . . . . . . . . . . . 14 dom (𝐵 × 𝐴) ⊆ 𝐵
1412, 13sstri 3962 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1514sseli 3949 . . . . . . . . . . . 12 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
1610rnssi 5797 . . . . . . . . . . . . . . . . 17 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ ran (𝐵 × 𝐴)
17 rnxpss 6016 . . . . . . . . . . . . . . . . 17 ran (𝐵 × 𝐴) ⊆ 𝐴
1816, 17sstri 3962 . . . . . . . . . . . . . . . 16 ran (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐴
1918sseli 3949 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) → 𝑦𝐴)
20 inss1 4190 . . . . . . . . . . . . . . . 16 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
2120ssbri 5097 . . . . . . . . . . . . . . 15 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
2219, 21anim12i 615 . . . . . . . . . . . . . 14 ((𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦) → (𝑦𝐴𝑥𝑓𝑦))
2322moimi 2629 . . . . . . . . . . . . 13 (∃*𝑦(𝑦𝐴𝑥𝑓𝑦) → ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
24 df-rmo 3141 . . . . . . . . . . . . 13 (∃*𝑦𝐴 𝑥𝑓𝑦 ↔ ∃*𝑦(𝑦𝐴𝑥𝑓𝑦))
25 df-rmo 3141 . . . . . . . . . . . . 13 (∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦 ↔ ∃*𝑦(𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴)) ∧ 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2623, 24, 253imtr4i 295 . . . . . . . . . . . 12 (∃*𝑦𝐴 𝑥𝑓𝑦 → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
2715, 26imim12i 62 . . . . . . . . . . 11 ((𝑥𝐵 → ∃*𝑦𝐴 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2827ralimi2 3152 . . . . . . . . . 10 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
29 relinxp 5674 . . . . . . . . . 10 Rel (𝑓 ∩ (𝐵 × 𝐴))
3028, 29jctil 523 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
31 dffun9 6372 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 ∈ ran (𝑓 ∩ (𝐵 × 𝐴))𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
3230, 31sylibr 237 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
3332funfnd 6374 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
34 rninxp 6023 . . . . . . . 8 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3534biimpri 231 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
3633, 35anim12i 615 . . . . . 6 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
37 df-fo 6349 . . . . . 6 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
3836, 37sylibr 237 . . . . 5 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
39 vex 3483 . . . . . . . 8 𝑓 ∈ V
4039inex1 5207 . . . . . . 7 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4140dmex 7611 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
4241fodom 9943 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
4338, 42syl 17 . . . 4 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
44 ssdomg 8551 . . . . 5 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
451, 14, 44mp2 9 . . . 4 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
46 domtr 8558 . . . 4 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
4743, 45, 46sylancl 589 . . 3 ((∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
4847exlimiv 1932 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
499, 48impbii 212 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦𝐴 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2115  ∃*wmo 2622  wral 3133  wrex 3134  ∃*wrmo 3136  Vcvv 3480  cin 3918  wss 3919   class class class wbr 5052   × cxp 5540  dom cdm 5542  ran crn 5543  Rel wrel 5547  Fun wfun 6337   Fn wfn 6338  ontowfo 6341  cdom 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-ac2 9883
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-card 9365  df-acn 9368  df-ac 9540
This theorem is referenced by:  brdom7disj  9951
  Copyright terms: Public domain W3C validator