MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv1 Structured version   Visualization version   GIF version

Theorem reusv1 5315
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.)
Assertion
Ref Expression
reusv1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 3142 . . . 4 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
21nfmov 2560 . . 3 𝑦∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)
3 rsp 3129 . . . . . 6 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
43com3l 89 . . . . 5 (𝑦𝐵 → (𝜑 → (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)))
54alrimdv 1933 . . . 4 (𝑦𝐵 → (𝜑 → ∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)))
6 mo2icl 3644 . . . 4 (∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶) → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
75, 6syl6 35 . . 3 (𝑦𝐵 → (𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)))
82, 7rexlimi 3243 . 2 (∃𝑦𝐵 𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
9 mormo 3350 . 2 (∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶) → ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
10 reu5 3351 . . 3 (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ∧ ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
1110rbaib 538 . 2 (∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
128, 9, 113syl 18 1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-v 3424
This theorem is referenced by:  cdleme25c  38296  cdleme29c  38317  cdlemefrs29cpre1  38339  cdlemk29-3  38852  cdlemkid5  38876  dihlsscpre  39175  mapdh9a  39730  mapdh9aOLDN  39731
  Copyright terms: Public domain W3C validator