![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reusv1 | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
Ref | Expression |
---|---|
reusv1 | ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1767 | . . . . 5 ⊢ Ⅎ𝑥⊤ | |
2 | nfra1 3163 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
4 | 1, 3 | nfmodv 2572 | . . . 4 ⊢ (⊤ → Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
5 | 4 | mptru 1514 | . . 3 ⊢ Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) |
6 | rsp 3149 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (𝑦 ∈ 𝐵 → (𝜑 → 𝑥 = 𝐶))) | |
7 | 6 | com3l 89 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶))) |
8 | 7 | alrimdv 1888 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶))) |
9 | mo2icl 3613 | . . . 4 ⊢ (∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶) → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
10 | 8, 9 | syl6 35 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
11 | 5, 10 | rexlimi 3252 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
12 | mormo 3363 | . 2 ⊢ (∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
13 | reu5 3364 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | |
14 | 13 | rbaib 531 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
15 | 11, 12, 14 | 3syl 18 | 1 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1505 = wceq 1507 ⊤wtru 1508 Ⅎwnf 1746 ∈ wcel 2050 ∃*wmo 2545 ∀wral 3082 ∃wrex 3083 ∃!wreu 3084 ∃*wrmo 3085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-v 3411 |
This theorem is referenced by: cdleme25c 36936 cdleme29c 36957 cdlemefrs29cpre1 36979 cdlemk29-3 37492 cdlemkid5 37516 dihlsscpre 37815 mapdh9a 38370 mapdh9aOLDN 38371 |
Copyright terms: Public domain | W3C validator |