Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reusv1 | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
Ref | Expression |
---|---|
reusv1 | ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3142 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
2 | 1 | nfmov 2560 | . . 3 ⊢ Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) |
3 | rsp 3129 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (𝑦 ∈ 𝐵 → (𝜑 → 𝑥 = 𝐶))) | |
4 | 3 | com3l 89 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶))) |
5 | 4 | alrimdv 1933 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶))) |
6 | mo2icl 3644 | . . . 4 ⊢ (∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶) → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
7 | 5, 6 | syl6 35 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
8 | 2, 7 | rexlimi 3243 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
9 | mormo 3350 | . 2 ⊢ (∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
10 | reu5 3351 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | |
11 | 10 | rbaib 538 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
12 | 8, 9, 11 | 3syl 18 | 1 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-v 3424 |
This theorem is referenced by: cdleme25c 38296 cdleme29c 38317 cdlemefrs29cpre1 38339 cdlemk29-3 38852 cdlemkid5 38876 dihlsscpre 39175 mapdh9a 39730 mapdh9aOLDN 39731 |
Copyright terms: Public domain | W3C validator |