MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv1 Structured version   Visualization version   GIF version

Theorem reusv1 5275
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.)
Assertion
Ref Expression
reusv1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 3130 . . . 4 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
21nfmov 2559 . . 3 𝑦∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)
3 rsp 3117 . . . . . 6 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
43com3l 89 . . . . 5 (𝑦𝐵 → (𝜑 → (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)))
54alrimdv 1937 . . . 4 (𝑦𝐵 → (𝜑 → ∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)))
6 mo2icl 3616 . . . 4 (∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶) → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
75, 6syl6 35 . . 3 (𝑦𝐵 → (𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)))
82, 7rexlimi 3224 . 2 (∃𝑦𝐵 𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
9 mormo 3326 . 2 (∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶) → ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
10 reu5 3327 . . 3 (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ∧ ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
1110rbaib 542 . 2 (∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
128, 9, 113syl 18 1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541   = wceq 1543  wcel 2112  ∃*wmo 2537  wral 3051  wrex 3052  ∃!wreu 3053  ∃*wrmo 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-v 3400
This theorem is referenced by:  cdleme25c  38055  cdleme29c  38076  cdlemefrs29cpre1  38098  cdlemk29-3  38611  cdlemkid5  38635  dihlsscpre  38934  mapdh9a  39489  mapdh9aOLDN  39490
  Copyright terms: Public domain W3C validator