MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3anl2 Structured version   Visualization version   GIF version

Theorem mp3anl2 1455
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
mp3anl2.1 𝜓
mp3anl2.2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
mp3anl2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem mp3anl2
StepHypRef Expression
1 mp3anl2.1 . . 3 𝜓
2 mp3anl2.2 . . . 4 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
32ex 413 . . 3 ((𝜑𝜓𝜒) → (𝜃𝜏))
41, 3mp3an2 1448 . 2 ((𝜑𝜒) → (𝜃𝜏))
54imp 407 1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  mp3anr2  1458  preleq  9374  ccat2s1fstOLD  14352  1dvds  15980  bcs2  29544  nmopub2tALT  30271  nmfnleub2  30288  nmophmi  30393  nmopcoadji  30463  atordi  30746  mdsymlem5  30769
  Copyright terms: Public domain W3C validator