|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mp3anl2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| mp3anl2.1 | ⊢ 𝜓 | 
| mp3anl2.2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| mp3anl2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3anl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | mp3anl2.2 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 3 | 2 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) | 
| 4 | 1, 3 | mp3an2 1451 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜃 → 𝜏)) | 
| 5 | 4 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: mp3anr2 1461 preleq 9656 1dvds 16308 bcs2 31201 nmopub2tALT 31928 nmfnleub2 31945 nmophmi 32050 nmopcoadji 32120 atordi 32403 mdsymlem5 32426 | 
| Copyright terms: Public domain | W3C validator |