HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub2tALT Structured version   Visualization version   GIF version

Theorem nmopub2tALT 31938
Description: An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
nmopub2tALT ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmopub2tALT
StepHypRef Expression
1 normcl 31154 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21ad2antlr 727 . . . . . . . . . 10 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
3 simpllr 776 . . . . . . . . . 10 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4 simpr 484 . . . . . . . . . 10 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
5 1re 11259 . . . . . . . . . . 11 1 ∈ ℝ
6 lemul2a 12120 . . . . . . . . . . 11 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
75, 6mp3anl2 1455 . . . . . . . . . 10 ((((norm𝑥) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
82, 3, 4, 7syl21anc 838 . . . . . . . . 9 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
9 ax-1rid 11223 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
109ad2antrl 728 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 1) = 𝐴)
1110ad2antrr 726 . . . . . . . . 9 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · 1) = 𝐴)
128, 11breqtrd 5174 . . . . . . . 8 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ 𝐴)
13 ffvelcdm 7101 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
14 normcl 31154 . . . . . . . . . . . 12 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1615adantlr 715 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
17 remulcl 11238 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → (𝐴 · (norm𝑥)) ∈ ℝ)
181, 17sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1918adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
2019adantll 714 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
21 simplrl 777 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℝ)
22 letr 11353 . . . . . . . . . 10 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (norm𝑥)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2316, 20, 21, 22syl3anc 1370 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2423adantr 480 . . . . . . . 8 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2512, 24mpan2d 694 . . . . . . 7 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2625ex 412 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → ((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2726com23 86 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2827ralimdva 3165 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2928imp 406 . . 3 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
30 rexr 11305 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3130adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ*)
32 nmopub 31937 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
3331, 32sylan2 593 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
3433biimpar 477 . . 3 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)) → (normop𝑇) ≤ 𝐴)
3529, 34syldan 591 . 2 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
36353impa 1109 1 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  *cxr 11292  cle 11294  chba 30948  normcno 30952  normopcnop 30974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hv0cl 31032  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-hnorm 30997  df-nmop 31868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator