![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atordi | Structured version Visualization version GIF version |
Description: An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atoml.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
atordi | ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atelch 32172 | . . . . . . . 8 ⊢ (𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
2 | atoml.1 | . . . . . . . . . . . . . . . 16 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | choccli 31135 | . . . . . . . . . . . . . . 15 ⊢ (⊥‘𝐴) ∈ Cℋ |
4 | chincl 31327 | . . . . . . . . . . . . . . 15 ⊢ (((⊥‘𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ ) | |
5 | 3, 4 | mpan 688 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ Cℋ → ((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ ) |
6 | chj0 31325 | . . . . . . . . . . . . . 14 ⊢ (((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = ((⊥‘𝐴) ∩ 𝐵)) | |
7 | 5, 6 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = ((⊥‘𝐴) ∩ 𝐵)) |
8 | incom 4201 | . . . . . . . . . . . . 13 ⊢ ((⊥‘𝐴) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐴)) | |
9 | 7, 8 | eqtrdi 2783 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = (𝐵 ∩ (⊥‘𝐴))) |
10 | h0elch 31083 | . . . . . . . . . . . . 13 ⊢ 0ℋ ∈ Cℋ | |
11 | chjcom 31334 | . . . . . . . . . . . . 13 ⊢ ((((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ ∧ 0ℋ ∈ Cℋ ) → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) | |
12 | 5, 10, 11 | sylancl 584 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
13 | 9, 12 | eqtr3d 2769 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Cℋ → (𝐵 ∩ (⊥‘𝐴)) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
14 | incom 4201 | . . . . . . . . . . . . 13 ⊢ ((⊥‘𝐴) ∩ 𝐴) = (𝐴 ∩ (⊥‘𝐴)) | |
15 | 2 | chocini 31282 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∩ (⊥‘𝐴)) = 0ℋ |
16 | 14, 15 | eqtri 2755 | . . . . . . . . . . . 12 ⊢ ((⊥‘𝐴) ∩ 𝐴) = 0ℋ |
17 | 16 | oveq1i 7434 | . . . . . . . . . . 11 ⊢ (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) |
18 | 13, 17 | eqtr4di 2785 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Cℋ → (𝐵 ∩ (⊥‘𝐴)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
19 | 18 | adantr 479 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
20 | 2 | cmidi 31438 | . . . . . . . . . . . . 13 ⊢ 𝐴 𝐶ℋ 𝐴 |
21 | 2, 2, 20 | cmcm2ii 31426 | . . . . . . . . . . . 12 ⊢ 𝐴 𝐶ℋ (⊥‘𝐴) |
22 | fh2 31447 | . . . . . . . . . . . 12 ⊢ ((((⊥‘𝐴) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝐴 𝐶ℋ (⊥‘𝐴) ∧ 𝐴 𝐶ℋ 𝐵)) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) | |
23 | 21, 22 | mpanr1 701 | . . . . . . . . . . 11 ⊢ ((((⊥‘𝐴) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 𝐶ℋ 𝐵) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
24 | 2, 23 | mp3anl2 1452 | . . . . . . . . . 10 ⊢ ((((⊥‘𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 𝐶ℋ 𝐵) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
25 | 3, 24 | mpanl1 698 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
26 | 19, 25 | eqtr4d 2770 | . . . . . . . 8 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) |
27 | 1, 26 | sylan 578 | . . . . . . 7 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) |
28 | incom 4201 | . . . . . . 7 ⊢ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) | |
29 | 27, 28 | eqtrdi 2783 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴))) |
30 | 29 | adantr 479 | . . . . 5 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → (𝐵 ∩ (⊥‘𝐴)) = ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴))) |
31 | 2 | atoml2i 32211 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) |
32 | 31 | adantlr 713 | . . . . 5 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) |
33 | 30, 32 | eqeltrd 2828 | . . . 4 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms) |
34 | atssma 32206 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝐵 ⊆ (⊥‘𝐴) ↔ (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms)) | |
35 | 3, 34 | mpan2 689 | . . . . 5 ⊢ (𝐵 ∈ HAtoms → (𝐵 ⊆ (⊥‘𝐴) ↔ (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms)) |
36 | 35 | ad2antrr 724 | . . . 4 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ (⊥‘𝐴) ↔ (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms)) |
37 | 33, 36 | mpbird 256 | . . 3 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ (⊥‘𝐴)) |
38 | 37 | ex 411 | . 2 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (¬ 𝐵 ⊆ 𝐴 → 𝐵 ⊆ (⊥‘𝐴))) |
39 | 38 | orrd 861 | 1 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3946 ⊆ wss 3947 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 Cℋ cch 30757 ⊥cort 30758 ∨ℋ chj 30761 0ℋc0h 30763 𝐶ℋ ccm 30764 HAtomscat 30793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cc 10464 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-addf 11223 ax-mulf 11224 ax-hilex 30827 ax-hfvadd 30828 ax-hvcom 30829 ax-hvass 30830 ax-hv0cl 30831 ax-hvaddid 30832 ax-hfvmul 30833 ax-hvmulid 30834 ax-hvmulass 30835 ax-hvdistr1 30836 ax-hvdistr2 30837 ax-hvmul0 30838 ax-hfi 30907 ax-his1 30910 ax-his2 30911 ax-his3 30912 ax-his4 30913 ax-hcompl 31030 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-oadd 8495 df-omul 8496 df-er 8729 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-fi 9440 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-acn 9971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13523 df-fzo 13666 df-fl 13795 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-clim 15470 df-rlim 15471 df-sum 15671 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-hom 17262 df-cco 17263 df-rest 17409 df-topn 17410 df-0g 17428 df-gsum 17429 df-topgen 17430 df-pt 17431 df-prds 17434 df-xrs 17489 df-qtop 17494 df-imas 17495 df-xps 17497 df-mre 17571 df-mrc 17572 df-acs 17574 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-mulg 19029 df-cntz 19273 df-cmn 19742 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-cn 23149 df-cnp 23150 df-lm 23151 df-haus 23237 df-tx 23484 df-hmeo 23677 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-xms 24244 df-ms 24245 df-tms 24246 df-cfil 25201 df-cau 25202 df-cmet 25203 df-grpo 30321 df-gid 30322 df-ginv 30323 df-gdiv 30324 df-ablo 30373 df-vc 30387 df-nv 30420 df-va 30423 df-ba 30424 df-sm 30425 df-0v 30426 df-vs 30427 df-nmcv 30428 df-ims 30429 df-dip 30529 df-ssp 30550 df-ph 30641 df-cbn 30691 df-hnorm 30796 df-hba 30797 df-hvsub 30799 df-hlim 30800 df-hcau 30801 df-sh 31035 df-ch 31049 df-oc 31080 df-ch0 31081 df-shs 31136 df-span 31137 df-chj 31138 df-chsup 31139 df-pjh 31223 df-cm 31411 df-cv 32107 df-at 32166 |
This theorem is referenced by: atord 32216 chirredlem4 32221 |
Copyright terms: Public domain | W3C validator |