Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atordi | Structured version Visualization version GIF version |
Description: An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atoml.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
atordi | ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atelch 30241 | . . . . . . . 8 ⊢ (𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
2 | atoml.1 | . . . . . . . . . . . . . . . 16 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | choccli 29204 | . . . . . . . . . . . . . . 15 ⊢ (⊥‘𝐴) ∈ Cℋ |
4 | chincl 29396 | . . . . . . . . . . . . . . 15 ⊢ (((⊥‘𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ ) | |
5 | 3, 4 | mpan 689 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ Cℋ → ((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ ) |
6 | chj0 29394 | . . . . . . . . . . . . . 14 ⊢ (((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = ((⊥‘𝐴) ∩ 𝐵)) | |
7 | 5, 6 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = ((⊥‘𝐴) ∩ 𝐵)) |
8 | incom 4109 | . . . . . . . . . . . . 13 ⊢ ((⊥‘𝐴) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐴)) | |
9 | 7, 8 | eqtrdi 2810 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = (𝐵 ∩ (⊥‘𝐴))) |
10 | h0elch 29152 | . . . . . . . . . . . . 13 ⊢ 0ℋ ∈ Cℋ | |
11 | chjcom 29403 | . . . . . . . . . . . . 13 ⊢ ((((⊥‘𝐴) ∩ 𝐵) ∈ Cℋ ∧ 0ℋ ∈ Cℋ ) → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) | |
12 | 5, 10, 11 | sylancl 589 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ Cℋ → (((⊥‘𝐴) ∩ 𝐵) ∨ℋ 0ℋ) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
13 | 9, 12 | eqtr3d 2796 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Cℋ → (𝐵 ∩ (⊥‘𝐴)) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
14 | incom 4109 | . . . . . . . . . . . . 13 ⊢ ((⊥‘𝐴) ∩ 𝐴) = (𝐴 ∩ (⊥‘𝐴)) | |
15 | 2 | chocini 29351 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∩ (⊥‘𝐴)) = 0ℋ |
16 | 14, 15 | eqtri 2782 | . . . . . . . . . . . 12 ⊢ ((⊥‘𝐴) ∩ 𝐴) = 0ℋ |
17 | 16 | oveq1i 7167 | . . . . . . . . . . 11 ⊢ (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = (0ℋ ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) |
18 | 13, 17 | eqtr4di 2812 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Cℋ → (𝐵 ∩ (⊥‘𝐴)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
19 | 18 | adantr 484 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
20 | 2 | cmidi 29507 | . . . . . . . . . . . . 13 ⊢ 𝐴 𝐶ℋ 𝐴 |
21 | 2, 2, 20 | cmcm2ii 29495 | . . . . . . . . . . . 12 ⊢ 𝐴 𝐶ℋ (⊥‘𝐴) |
22 | fh2 29516 | . . . . . . . . . . . 12 ⊢ ((((⊥‘𝐴) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝐴 𝐶ℋ (⊥‘𝐴) ∧ 𝐴 𝐶ℋ 𝐵)) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) | |
23 | 21, 22 | mpanr1 702 | . . . . . . . . . . 11 ⊢ ((((⊥‘𝐴) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 𝐶ℋ 𝐵) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
24 | 2, 23 | mp3anl2 1454 | . . . . . . . . . 10 ⊢ ((((⊥‘𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 𝐶ℋ 𝐵) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
25 | 3, 24 | mpanl1 699 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵) → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = (((⊥‘𝐴) ∩ 𝐴) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
26 | 19, 25 | eqtr4d 2797 | . . . . . . . 8 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) |
27 | 1, 26 | sylan 583 | . . . . . . 7 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) |
28 | incom 4109 | . . . . . . 7 ⊢ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) | |
29 | 27, 28 | eqtrdi 2810 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ∩ (⊥‘𝐴)) = ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴))) |
30 | 29 | adantr 484 | . . . . 5 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → (𝐵 ∩ (⊥‘𝐴)) = ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴))) |
31 | 2 | atoml2i 30280 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) |
32 | 31 | adantlr 714 | . . . . 5 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) |
33 | 30, 32 | eqeltrd 2853 | . . . 4 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms) |
34 | atssma 30275 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝐵 ⊆ (⊥‘𝐴) ↔ (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms)) | |
35 | 3, 34 | mpan2 690 | . . . . 5 ⊢ (𝐵 ∈ HAtoms → (𝐵 ⊆ (⊥‘𝐴) ↔ (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms)) |
36 | 35 | ad2antrr 725 | . . . 4 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ (⊥‘𝐴) ↔ (𝐵 ∩ (⊥‘𝐴)) ∈ HAtoms)) |
37 | 33, 36 | mpbird 260 | . . 3 ⊢ (((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) ∧ ¬ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ (⊥‘𝐴)) |
38 | 37 | ex 416 | . 2 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (¬ 𝐵 ⊆ 𝐴 → 𝐵 ⊆ (⊥‘𝐴))) |
39 | 38 | orrd 860 | 1 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∩ cin 3860 ⊆ wss 3861 class class class wbr 5037 ‘cfv 6341 (class class class)co 7157 Cℋ cch 28826 ⊥cort 28827 ∨ℋ chj 28830 0ℋc0h 28832 𝐶ℋ ccm 28833 HAtomscat 28862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-cc 9909 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 ax-mulf 10669 ax-hilex 28896 ax-hfvadd 28897 ax-hvcom 28898 ax-hvass 28899 ax-hv0cl 28900 ax-hvaddid 28901 ax-hfvmul 28902 ax-hvmulid 28903 ax-hvmulass 28904 ax-hvdistr1 28905 ax-hvdistr2 28906 ax-hvmul0 28907 ax-hfi 28976 ax-his1 28979 ax-his2 28980 ax-his3 28981 ax-his4 28982 ax-hcompl 29099 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-oadd 8123 df-omul 8124 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-fi 8922 df-sup 8953 df-inf 8954 df-oi 9021 df-card 9415 df-acn 9418 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-q 12403 df-rp 12445 df-xneg 12562 df-xadd 12563 df-xmul 12564 df-ioo 12797 df-ico 12799 df-icc 12800 df-fz 12954 df-fzo 13097 df-fl 13225 df-seq 13433 df-exp 13494 df-hash 13755 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-clim 14907 df-rlim 14908 df-sum 15105 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-starv 16653 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-unif 16661 df-hom 16662 df-cco 16663 df-rest 16769 df-topn 16770 df-0g 16788 df-gsum 16789 df-topgen 16790 df-pt 16791 df-prds 16794 df-xrs 16848 df-qtop 16853 df-imas 16854 df-xps 16856 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-mulg 18307 df-cntz 18529 df-cmn 18990 df-psmet 20173 df-xmet 20174 df-met 20175 df-bl 20176 df-mopn 20177 df-fbas 20178 df-fg 20179 df-cnfld 20182 df-top 21609 df-topon 21626 df-topsp 21648 df-bases 21661 df-cld 21734 df-ntr 21735 df-cls 21736 df-nei 21813 df-cn 21942 df-cnp 21943 df-lm 21944 df-haus 22030 df-tx 22277 df-hmeo 22470 df-fil 22561 df-fm 22653 df-flim 22654 df-flf 22655 df-xms 23037 df-ms 23038 df-tms 23039 df-cfil 23970 df-cau 23971 df-cmet 23972 df-grpo 28390 df-gid 28391 df-ginv 28392 df-gdiv 28393 df-ablo 28442 df-vc 28456 df-nv 28489 df-va 28492 df-ba 28493 df-sm 28494 df-0v 28495 df-vs 28496 df-nmcv 28497 df-ims 28498 df-dip 28598 df-ssp 28619 df-ph 28710 df-cbn 28760 df-hnorm 28865 df-hba 28866 df-hvsub 28868 df-hlim 28869 df-hcau 28870 df-sh 29104 df-ch 29118 df-oc 29149 df-ch0 29150 df-shs 29205 df-span 29206 df-chj 29207 df-chsup 29208 df-pjh 29292 df-cm 29480 df-cv 30176 df-at 30235 |
This theorem is referenced by: atord 30285 chirredlem4 30290 |
Copyright terms: Public domain | W3C validator |