HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadji Structured version   Visualization version   GIF version

Theorem nmopcoadji 31106
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadji (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)

Proof of Theorem nmopcoadji
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmopcoadj.1 . . . . . . 7 𝑇 ∈ BndLinOp
2 adjbdlnb 31089 . . . . . . 7 (𝑇 ∈ BndLinOp ↔ (adj𝑇) ∈ BndLinOp)
31, 2mpbi 229 . . . . . 6 (adj𝑇) ∈ BndLinOp
4 bdopf 30867 . . . . . 6 ((adj𝑇) ∈ BndLinOp → (adj𝑇): ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . 5 (adj𝑇): ℋ⟶ ℋ
6 bdopf 30867 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
71, 6ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
85, 7hocofi 30771 . . . 4 ((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ
9 nmopre 30875 . . . . . . 7 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
101, 9ax-mp 5 . . . . . 6 (normop𝑇) ∈ ℝ
1110resqcli 14100 . . . . 5 ((normop𝑇)↑2) ∈ ℝ
12 rexr 11210 . . . . 5 (((normop𝑇)↑2) ∈ ℝ → ((normop𝑇)↑2) ∈ ℝ*)
1311, 12ax-mp 5 . . . 4 ((normop𝑇)↑2) ∈ ℝ*
14 nmopub 30913 . . . 4 ((((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ ∧ ((normop𝑇)↑2) ∈ ℝ*) → ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))))
158, 13, 14mp2an 690 . . 3 ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
165, 7hocoi 30769 . . . . . . . 8 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) = ((adj𝑇)‘(𝑇𝑥)))
1716fveq2d 6851 . . . . . . 7 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
1817adantr 481 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
197ffvelcdmi 7039 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
205ffvelcdmi 7039 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
21 normcl 30130 . . . . . . . . 9 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2219, 20, 213syl 18 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2322adantr 481 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
24 nmopre 30875 . . . . . . . . . 10 ((adj𝑇) ∈ BndLinOp → (normop‘(adj𝑇)) ∈ ℝ)
253, 24ax-mp 5 . . . . . . . . 9 (normop‘(adj𝑇)) ∈ ℝ
26 normcl 30130 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2719, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
28 remulcl 11145 . . . . . . . . 9 (((normop‘(adj𝑇)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
2925, 27, 28sylancr 587 . . . . . . . 8 (𝑥 ∈ ℋ → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3029adantr 481 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3125, 10remulcli 11180 . . . . . . . 8 ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ
3231a1i 11 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ)
333nmbdoplbi 31029 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3419, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3534adantr 481 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3627adantr 481 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
3710a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop𝑇) ∈ ℝ)
38 normcl 30130 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
39 remulcl 11145 . . . . . . . . . . 11 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4010, 38, 39sylancr 587 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4140adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
421nmbdoplbi 31029 . . . . . . . . . 10 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
4342adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
44 1re 11164 . . . . . . . . . . . 12 1 ∈ ℝ
45 nmopge0 30916 . . . . . . . . . . . . . . 15 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
461, 6, 45mp2b 10 . . . . . . . . . . . . . 14 0 ≤ (normop𝑇)
4710, 46pm3.2i 471 . . . . . . . . . . . . 13 ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))
48 lemul2a 12019 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
4947, 48mp3anl3 1457 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5044, 49mpanl2 699 . . . . . . . . . . 11 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5138, 50sylan 580 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5210recni 11178 . . . . . . . . . . 11 (normop𝑇) ∈ ℂ
5352mulridi 11168 . . . . . . . . . 10 ((normop𝑇) · 1) = (normop𝑇)
5451, 53breqtrdi 5151 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ (normop𝑇))
5536, 41, 37, 43, 54letrd 11321 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
56 nmopge0 30916 . . . . . . . . . . 11 ((adj𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(adj𝑇)))
573, 4, 56mp2b 10 . . . . . . . . . 10 0 ≤ (normop‘(adj𝑇))
5825, 57pm3.2i 471 . . . . . . . . 9 ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))
59 lemul2a 12019 . . . . . . . . 9 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6058, 59mp3anl3 1457 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6136, 37, 55, 60syl21anc 836 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6223, 30, 32, 35, 61letrd 11321 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6318, 62eqbrtrd 5132 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
641nmopadji 31095 . . . . . . 7 (normop‘(adj𝑇)) = (normop𝑇)
6564oveq1i 7372 . . . . . 6 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇) · (normop𝑇))
6652sqvali 14094 . . . . . 6 ((normop𝑇)↑2) = ((normop𝑇) · (normop𝑇))
6765, 66eqtr4i 2762 . . . . 5 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇)↑2)
6863, 67breqtrdi 5151 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))
6968ex 413 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
7015, 69mprgbir 3067 . 2 (normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2)
71 nmopge0 30916 . . . . . . . 8 (((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
728, 71ax-mp 5 . . . . . . 7 0 ≤ (normop‘((adj𝑇) ∘ 𝑇))
733, 1bdopcoi 31103 . . . . . . . . 9 ((adj𝑇) ∘ 𝑇) ∈ BndLinOp
74 nmopre 30875 . . . . . . . . 9 (((adj𝑇) ∘ 𝑇) ∈ BndLinOp → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
7573, 74ax-mp 5 . . . . . . . 8 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ
7675sqrtcli 15268 . . . . . . 7 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ)
77 rexr 11210 . . . . . . 7 ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*)
7872, 76, 77mp2b 10 . . . . . 6 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*
79 nmopub 30913 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))))
807, 78, 79mp2an 690 . . . . 5 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
8119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
82 hicl 30085 . . . . . . . . . . . 12 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8381, 82mpancom 686 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8483abscld 15333 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8584adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8622, 38remulcld 11194 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8786adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8875a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
89 bcs 30186 . . . . . . . . . . 11 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9081, 89mpancom 686 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9190adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
925, 7hococli 30770 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ)
93 normcl 30130 . . . . . . . . . . . 12 ((((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9492, 93syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9594adantr 481 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9638adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
97 normge0 30131 . . . . . . . . . . . . . . 15 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9819, 20, 973syl 18 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9922, 98jca 512 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
10099adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
101 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
102 lemul2a 12019 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10344, 102mp3anl2 1456 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10496, 100, 101, 103syl21anc 836 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10522recnd 11192 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℂ)
106105mulridd 11181 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘((adj𝑇)‘(𝑇𝑥))))
107106, 17eqtr4d 2774 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
108107adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
109104, 108breqtrd 5136 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
110 remulcl 11145 . . . . . . . . . . . . 13 (((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11175, 38, 110sylancr 587 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
112111adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11373nmbdoplbi 31029 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
114113adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
11575, 72pm3.2i 471 . . . . . . . . . . . . . . 15 ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
116 lemul2a 12019 . . . . . . . . . . . . . . 15 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
117115, 116mp3anl3 1457 . . . . . . . . . . . . . 14 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11844, 117mpanl2 699 . . . . . . . . . . . . 13 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11938, 118sylan 580 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
12075recni 11178 . . . . . . . . . . . . 13 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℂ
121120mulridi 11168 . . . . . . . . . . . 12 ((normop‘((adj𝑇) ∘ 𝑇)) · 1) = (normop‘((adj𝑇) ∘ 𝑇))
122119, 121breqtrdi 5151 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12395, 112, 88, 114, 122letrd 11321 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12487, 95, 88, 109, 123letrd 11321 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12585, 87, 88, 91, 124letrd 11321 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
126 resqcl 14039 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → ((norm‘(𝑇𝑥))↑2) ∈ ℝ)
127 sqge0 14051 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((norm‘(𝑇𝑥))↑2))
128126, 127absidd 15319 . . . . . . . . . . 11 ((norm‘(𝑇𝑥)) ∈ ℝ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
12919, 26, 1283syl 18 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
130 normsq 30139 . . . . . . . . . . . . 13 ((𝑇𝑥) ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
13119, 130syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
132 bdopadj 31087 . . . . . . . . . . . . . . . 16 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ dom adj)
1333, 132ax-mp 5 . . . . . . . . . . . . . . 15 (adj𝑇) ∈ dom adj
134 adj2 30939 . . . . . . . . . . . . . . 15 (((adj𝑇) ∈ dom adj ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
135133, 134mp3an1 1448 . . . . . . . . . . . . . 14 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
13619, 135mpancom 686 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
137 bdopadj 31087 . . . . . . . . . . . . . . . 16 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
138 adjadj 30941 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
1391, 137, 138mp2b 10 . . . . . . . . . . . . . . 15 (adj‘(adj𝑇)) = 𝑇
140139fveq1i 6848 . . . . . . . . . . . . . 14 ((adj‘(adj𝑇))‘𝑥) = (𝑇𝑥)
141140oveq2i 7373 . . . . . . . . . . . . 13 ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)) = ((𝑇𝑥) ·ih (𝑇𝑥))
142136, 141eqtr2di 2788 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((𝑇𝑥) ·ih (𝑇𝑥)) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
143131, 142eqtrd 2771 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
144143fveq2d 6851 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
145129, 144eqtr3d 2773 . . . . . . . . 9 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
146145adantr 481 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
14775sqsqrti 15272 . . . . . . . . . 10 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
1488, 71, 147mp2b 10 . . . . . . . . 9 ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇))
149148a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
150125, 146, 1493brtr4d 5142 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
151 normge0 30131 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
15219, 151syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
1538, 71, 76mp2b 10 . . . . . . . . . 10 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ
15475sqrtge0i 15273 . . . . . . . . . . 11 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
1558, 71, 154mp2b 10 . . . . . . . . . 10 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
156 le2sq 14049 . . . . . . . . . 10 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) ∧ ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
157153, 155, 156mpanr12 703 . . . . . . . . 9 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
15827, 152, 157syl2anc 584 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
159158adantr 481 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
160150, 159mpbird 256 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
161160ex 413 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
16280, 161mprgbir 3067 . . . 4 (normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
16310, 153le2sqi 14104 . . . . 5 ((0 ≤ (normop𝑇) ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
16446, 155, 163mp2an 690 . . . 4 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
165162, 164mpbi 229 . . 3 ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)
166165, 148breqtri 5135 . 2 ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))
16775, 11letri3i 11280 . 2 ((normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2) ↔ ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ∧ ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))))
16870, 166, 167mpbir2an 709 1 (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060   class class class wbr 5110  dom cdm 5638  ccom 5642  wf 6497  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   · cmul 11065  *cxr 11197  cle 11199  2c2 12217  cexp 13977  csqrt 15130  abscabs 15131  chba 29924   ·ih csp 29927  normcno 29928  normopcnop 29950  BndLinOpcbo 29953  adjcado 29960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cc 10380  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140  ax-hilex 30004  ax-hfvadd 30005  ax-hvcom 30006  ax-hvass 30007  ax-hv0cl 30008  ax-hvaddid 30009  ax-hfvmul 30010  ax-hvmulid 30011  ax-hvmulass 30012  ax-hvdistr1 30013  ax-hvdistr2 30014  ax-hvmul0 30015  ax-hfi 30084  ax-his1 30087  ax-his2 30088  ax-his3 30089  ax-his4 30090  ax-hcompl 30207
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-acn 9887  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-cn 22615  df-cnp 22616  df-lm 22617  df-t1 22702  df-haus 22703  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cfil 24656  df-cau 24657  df-cmet 24658  df-grpo 29498  df-gid 29499  df-ginv 29500  df-gdiv 29501  df-ablo 29550  df-vc 29564  df-nv 29597  df-va 29600  df-ba 29601  df-sm 29602  df-0v 29603  df-vs 29604  df-nmcv 29605  df-ims 29606  df-dip 29706  df-ssp 29727  df-lno 29749  df-nmoo 29750  df-0o 29752  df-ph 29818  df-cbn 29868  df-hnorm 29973  df-hba 29974  df-hvsub 29976  df-hlim 29977  df-hcau 29978  df-sh 30212  df-ch 30226  df-oc 30257  df-ch0 30258  df-shs 30313  df-pjh 30400  df-h0op 30753  df-nmop 30844  df-cnop 30845  df-lnop 30846  df-bdop 30847  df-unop 30848  df-hmop 30849  df-nmfn 30850  df-nlfn 30851  df-cnfn 30852  df-lnfn 30853  df-adjh 30854
This theorem is referenced by:  nmopcoadj2i  31107
  Copyright terms: Public domain W3C validator