HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadji Structured version   Visualization version   GIF version

Theorem nmopcoadji 32129
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadji (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)

Proof of Theorem nmopcoadji
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmopcoadj.1 . . . . . . 7 𝑇 ∈ BndLinOp
2 adjbdlnb 32112 . . . . . . 7 (𝑇 ∈ BndLinOp ↔ (adj𝑇) ∈ BndLinOp)
31, 2mpbi 230 . . . . . 6 (adj𝑇) ∈ BndLinOp
4 bdopf 31890 . . . . . 6 ((adj𝑇) ∈ BndLinOp → (adj𝑇): ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . 5 (adj𝑇): ℋ⟶ ℋ
6 bdopf 31890 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
71, 6ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
85, 7hocofi 31794 . . . 4 ((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ
9 nmopre 31898 . . . . . . 7 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
101, 9ax-mp 5 . . . . . 6 (normop𝑇) ∈ ℝ
1110resqcli 14221 . . . . 5 ((normop𝑇)↑2) ∈ ℝ
12 rexr 11304 . . . . 5 (((normop𝑇)↑2) ∈ ℝ → ((normop𝑇)↑2) ∈ ℝ*)
1311, 12ax-mp 5 . . . 4 ((normop𝑇)↑2) ∈ ℝ*
14 nmopub 31936 . . . 4 ((((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ ∧ ((normop𝑇)↑2) ∈ ℝ*) → ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))))
158, 13, 14mp2an 692 . . 3 ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
165, 7hocoi 31792 . . . . . . . 8 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) = ((adj𝑇)‘(𝑇𝑥)))
1716fveq2d 6910 . . . . . . 7 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
1817adantr 480 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
197ffvelcdmi 7102 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
205ffvelcdmi 7102 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
21 normcl 31153 . . . . . . . . 9 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2219, 20, 213syl 18 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2322adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
24 nmopre 31898 . . . . . . . . . 10 ((adj𝑇) ∈ BndLinOp → (normop‘(adj𝑇)) ∈ ℝ)
253, 24ax-mp 5 . . . . . . . . 9 (normop‘(adj𝑇)) ∈ ℝ
26 normcl 31153 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2719, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
28 remulcl 11237 . . . . . . . . 9 (((normop‘(adj𝑇)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
2925, 27, 28sylancr 587 . . . . . . . 8 (𝑥 ∈ ℋ → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3029adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3125, 10remulcli 11274 . . . . . . . 8 ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ
3231a1i 11 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ)
333nmbdoplbi 32052 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3419, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3534adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3627adantr 480 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
3710a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop𝑇) ∈ ℝ)
38 normcl 31153 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
39 remulcl 11237 . . . . . . . . . . 11 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4010, 38, 39sylancr 587 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4140adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
421nmbdoplbi 32052 . . . . . . . . . 10 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
4342adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
44 1re 11258 . . . . . . . . . . . 12 1 ∈ ℝ
45 nmopge0 31939 . . . . . . . . . . . . . . 15 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
461, 6, 45mp2b 10 . . . . . . . . . . . . . 14 0 ≤ (normop𝑇)
4710, 46pm3.2i 470 . . . . . . . . . . . . 13 ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))
48 lemul2a 12119 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
4947, 48mp3anl3 1456 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5044, 49mpanl2 701 . . . . . . . . . . 11 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5138, 50sylan 580 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5210recni 11272 . . . . . . . . . . 11 (normop𝑇) ∈ ℂ
5352mulridi 11262 . . . . . . . . . 10 ((normop𝑇) · 1) = (normop𝑇)
5451, 53breqtrdi 5188 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ (normop𝑇))
5536, 41, 37, 43, 54letrd 11415 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
56 nmopge0 31939 . . . . . . . . . . 11 ((adj𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(adj𝑇)))
573, 4, 56mp2b 10 . . . . . . . . . 10 0 ≤ (normop‘(adj𝑇))
5825, 57pm3.2i 470 . . . . . . . . 9 ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))
59 lemul2a 12119 . . . . . . . . 9 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6058, 59mp3anl3 1456 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6136, 37, 55, 60syl21anc 838 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6223, 30, 32, 35, 61letrd 11415 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6318, 62eqbrtrd 5169 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
641nmopadji 32118 . . . . . . 7 (normop‘(adj𝑇)) = (normop𝑇)
6564oveq1i 7440 . . . . . 6 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇) · (normop𝑇))
6652sqvali 14215 . . . . . 6 ((normop𝑇)↑2) = ((normop𝑇) · (normop𝑇))
6765, 66eqtr4i 2765 . . . . 5 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇)↑2)
6863, 67breqtrdi 5188 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))
6968ex 412 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
7015, 69mprgbir 3065 . 2 (normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2)
71 nmopge0 31939 . . . . . . . 8 (((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
728, 71ax-mp 5 . . . . . . 7 0 ≤ (normop‘((adj𝑇) ∘ 𝑇))
733, 1bdopcoi 32126 . . . . . . . . 9 ((adj𝑇) ∘ 𝑇) ∈ BndLinOp
74 nmopre 31898 . . . . . . . . 9 (((adj𝑇) ∘ 𝑇) ∈ BndLinOp → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
7573, 74ax-mp 5 . . . . . . . 8 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ
7675sqrtcli 15406 . . . . . . 7 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ)
77 rexr 11304 . . . . . . 7 ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*)
7872, 76, 77mp2b 10 . . . . . 6 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*
79 nmopub 31936 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))))
807, 78, 79mp2an 692 . . . . 5 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
8119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
82 hicl 31108 . . . . . . . . . . . 12 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8381, 82mpancom 688 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8483abscld 15471 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8584adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8622, 38remulcld 11288 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8786adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8875a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
89 bcs 31209 . . . . . . . . . . 11 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9081, 89mpancom 688 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9190adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
925, 7hococli 31793 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ)
93 normcl 31153 . . . . . . . . . . . 12 ((((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9492, 93syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9594adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9638adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
97 normge0 31154 . . . . . . . . . . . . . . 15 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9819, 20, 973syl 18 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9922, 98jca 511 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
10099adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
101 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
102 lemul2a 12119 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10344, 102mp3anl2 1455 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10496, 100, 101, 103syl21anc 838 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10522recnd 11286 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℂ)
106105mulridd 11275 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘((adj𝑇)‘(𝑇𝑥))))
107106, 17eqtr4d 2777 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
108107adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
109104, 108breqtrd 5173 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
110 remulcl 11237 . . . . . . . . . . . . 13 (((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11175, 38, 110sylancr 587 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
112111adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11373nmbdoplbi 32052 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
114113adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
11575, 72pm3.2i 470 . . . . . . . . . . . . . . 15 ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
116 lemul2a 12119 . . . . . . . . . . . . . . 15 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
117115, 116mp3anl3 1456 . . . . . . . . . . . . . 14 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11844, 117mpanl2 701 . . . . . . . . . . . . 13 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11938, 118sylan 580 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
12075recni 11272 . . . . . . . . . . . . 13 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℂ
121120mulridi 11262 . . . . . . . . . . . 12 ((normop‘((adj𝑇) ∘ 𝑇)) · 1) = (normop‘((adj𝑇) ∘ 𝑇))
122119, 121breqtrdi 5188 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12395, 112, 88, 114, 122letrd 11415 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12487, 95, 88, 109, 123letrd 11415 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12585, 87, 88, 91, 124letrd 11415 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
126 resqcl 14160 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → ((norm‘(𝑇𝑥))↑2) ∈ ℝ)
127 sqge0 14172 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((norm‘(𝑇𝑥))↑2))
128126, 127absidd 15457 . . . . . . . . . . 11 ((norm‘(𝑇𝑥)) ∈ ℝ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
12919, 26, 1283syl 18 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
130 normsq 31162 . . . . . . . . . . . . 13 ((𝑇𝑥) ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
13119, 130syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
132 bdopadj 32110 . . . . . . . . . . . . . . . 16 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ dom adj)
1333, 132ax-mp 5 . . . . . . . . . . . . . . 15 (adj𝑇) ∈ dom adj
134 adj2 31962 . . . . . . . . . . . . . . 15 (((adj𝑇) ∈ dom adj ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
135133, 134mp3an1 1447 . . . . . . . . . . . . . 14 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
13619, 135mpancom 688 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
137 bdopadj 32110 . . . . . . . . . . . . . . . 16 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
138 adjadj 31964 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
1391, 137, 138mp2b 10 . . . . . . . . . . . . . . 15 (adj‘(adj𝑇)) = 𝑇
140139fveq1i 6907 . . . . . . . . . . . . . 14 ((adj‘(adj𝑇))‘𝑥) = (𝑇𝑥)
141140oveq2i 7441 . . . . . . . . . . . . 13 ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)) = ((𝑇𝑥) ·ih (𝑇𝑥))
142136, 141eqtr2di 2791 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((𝑇𝑥) ·ih (𝑇𝑥)) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
143131, 142eqtrd 2774 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
144143fveq2d 6910 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
145129, 144eqtr3d 2776 . . . . . . . . 9 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
146145adantr 480 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
14775sqsqrti 15410 . . . . . . . . . 10 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
1488, 71, 147mp2b 10 . . . . . . . . 9 ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇))
149148a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
150125, 146, 1493brtr4d 5179 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
151 normge0 31154 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
15219, 151syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
1538, 71, 76mp2b 10 . . . . . . . . . 10 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ
15475sqrtge0i 15411 . . . . . . . . . . 11 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
1558, 71, 154mp2b 10 . . . . . . . . . 10 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
156 le2sq 14170 . . . . . . . . . 10 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) ∧ ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
157153, 155, 156mpanr12 705 . . . . . . . . 9 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
15827, 152, 157syl2anc 584 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
159158adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
160150, 159mpbird 257 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
161160ex 412 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
16280, 161mprgbir 3065 . . . 4 (normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
16310, 153le2sqi 14225 . . . . 5 ((0 ≤ (normop𝑇) ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
16446, 155, 163mp2an 692 . . . 4 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
165162, 164mpbi 230 . . 3 ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)
166165, 148breqtri 5172 . 2 ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))
16775, 11letri3i 11374 . 2 ((normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2) ↔ ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ∧ ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))))
16870, 166, 167mpbir2an 711 1 (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058   class class class wbr 5147  dom cdm 5688  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  *cxr 11291  cle 11293  2c2 12318  cexp 14098  csqrt 15268  abscabs 15269  chba 30947   ·ih csp 30950  normcno 30951  normopcnop 30973  BndLinOpcbo 30976  adjcado 30983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-t1 23337  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-lno 30772  df-nmoo 30773  df-0o 30775  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-pjh 31423  df-h0op 31776  df-nmop 31867  df-cnop 31868  df-lnop 31869  df-bdop 31870  df-unop 31871  df-hmop 31872  df-nmfn 31873  df-nlfn 31874  df-cnfn 31875  df-lnfn 31876  df-adjh 31877
This theorem is referenced by:  nmopcoadj2i  32130
  Copyright terms: Public domain W3C validator