HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadji Structured version   Visualization version   GIF version

Theorem nmopcoadji 29976
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadji (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)

Proof of Theorem nmopcoadji
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmopcoadj.1 . . . . . . 7 𝑇 ∈ BndLinOp
2 adjbdlnb 29959 . . . . . . 7 (𝑇 ∈ BndLinOp ↔ (adj𝑇) ∈ BndLinOp)
31, 2mpbi 233 . . . . . 6 (adj𝑇) ∈ BndLinOp
4 bdopf 29737 . . . . . 6 ((adj𝑇) ∈ BndLinOp → (adj𝑇): ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . 5 (adj𝑇): ℋ⟶ ℋ
6 bdopf 29737 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
71, 6ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
85, 7hocofi 29641 . . . 4 ((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ
9 nmopre 29745 . . . . . . 7 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
101, 9ax-mp 5 . . . . . 6 (normop𝑇) ∈ ℝ
1110resqcli 13592 . . . . 5 ((normop𝑇)↑2) ∈ ℝ
12 rexr 10718 . . . . 5 (((normop𝑇)↑2) ∈ ℝ → ((normop𝑇)↑2) ∈ ℝ*)
1311, 12ax-mp 5 . . . 4 ((normop𝑇)↑2) ∈ ℝ*
14 nmopub 29783 . . . 4 ((((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ ∧ ((normop𝑇)↑2) ∈ ℝ*) → ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))))
158, 13, 14mp2an 692 . . 3 ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
165, 7hocoi 29639 . . . . . . . 8 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) = ((adj𝑇)‘(𝑇𝑥)))
1716fveq2d 6663 . . . . . . 7 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
1817adantr 485 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
197ffvelrni 6842 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
205ffvelrni 6842 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
21 normcl 29000 . . . . . . . . 9 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2219, 20, 213syl 18 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2322adantr 485 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
24 nmopre 29745 . . . . . . . . . 10 ((adj𝑇) ∈ BndLinOp → (normop‘(adj𝑇)) ∈ ℝ)
253, 24ax-mp 5 . . . . . . . . 9 (normop‘(adj𝑇)) ∈ ℝ
26 normcl 29000 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2719, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
28 remulcl 10653 . . . . . . . . 9 (((normop‘(adj𝑇)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
2925, 27, 28sylancr 591 . . . . . . . 8 (𝑥 ∈ ℋ → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3029adantr 485 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3125, 10remulcli 10688 . . . . . . . 8 ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ
3231a1i 11 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ)
333nmbdoplbi 29899 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3419, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3534adantr 485 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3627adantr 485 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
3710a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop𝑇) ∈ ℝ)
38 normcl 29000 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
39 remulcl 10653 . . . . . . . . . . 11 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4010, 38, 39sylancr 591 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4140adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
421nmbdoplbi 29899 . . . . . . . . . 10 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
4342adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
44 1re 10672 . . . . . . . . . . . 12 1 ∈ ℝ
45 nmopge0 29786 . . . . . . . . . . . . . . 15 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
461, 6, 45mp2b 10 . . . . . . . . . . . . . 14 0 ≤ (normop𝑇)
4710, 46pm3.2i 475 . . . . . . . . . . . . 13 ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))
48 lemul2a 11526 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
4947, 48mp3anl3 1455 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5044, 49mpanl2 701 . . . . . . . . . . 11 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5138, 50sylan 584 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5210recni 10686 . . . . . . . . . . 11 (normop𝑇) ∈ ℂ
5352mulid1i 10676 . . . . . . . . . 10 ((normop𝑇) · 1) = (normop𝑇)
5451, 53breqtrdi 5074 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ (normop𝑇))
5536, 41, 37, 43, 54letrd 10828 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
56 nmopge0 29786 . . . . . . . . . . 11 ((adj𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(adj𝑇)))
573, 4, 56mp2b 10 . . . . . . . . . 10 0 ≤ (normop‘(adj𝑇))
5825, 57pm3.2i 475 . . . . . . . . 9 ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))
59 lemul2a 11526 . . . . . . . . 9 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6058, 59mp3anl3 1455 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6136, 37, 55, 60syl21anc 837 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6223, 30, 32, 35, 61letrd 10828 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6318, 62eqbrtrd 5055 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
641nmopadji 29965 . . . . . . 7 (normop‘(adj𝑇)) = (normop𝑇)
6564oveq1i 7161 . . . . . 6 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇) · (normop𝑇))
6652sqvali 13586 . . . . . 6 ((normop𝑇)↑2) = ((normop𝑇) · (normop𝑇))
6765, 66eqtr4i 2785 . . . . 5 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇)↑2)
6863, 67breqtrdi 5074 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))
6968ex 417 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
7015, 69mprgbir 3086 . 2 (normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2)
71 nmopge0 29786 . . . . . . . 8 (((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
728, 71ax-mp 5 . . . . . . 7 0 ≤ (normop‘((adj𝑇) ∘ 𝑇))
733, 1bdopcoi 29973 . . . . . . . . 9 ((adj𝑇) ∘ 𝑇) ∈ BndLinOp
74 nmopre 29745 . . . . . . . . 9 (((adj𝑇) ∘ 𝑇) ∈ BndLinOp → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
7573, 74ax-mp 5 . . . . . . . 8 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ
7675sqrtcli 14772 . . . . . . 7 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ)
77 rexr 10718 . . . . . . 7 ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*)
7872, 76, 77mp2b 10 . . . . . 6 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*
79 nmopub 29783 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))))
807, 78, 79mp2an 692 . . . . 5 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
8119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
82 hicl 28955 . . . . . . . . . . . 12 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8381, 82mpancom 688 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8483abscld 14837 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8584adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8622, 38remulcld 10702 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8786adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8875a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
89 bcs 29056 . . . . . . . . . . 11 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9081, 89mpancom 688 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9190adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
925, 7hococli 29640 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ)
93 normcl 29000 . . . . . . . . . . . 12 ((((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9492, 93syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9594adantr 485 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9638adantr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
97 normge0 29001 . . . . . . . . . . . . . . 15 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9819, 20, 973syl 18 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9922, 98jca 516 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
10099adantr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
101 simpr 489 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
102 lemul2a 11526 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10344, 102mp3anl2 1454 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10496, 100, 101, 103syl21anc 837 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10522recnd 10700 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℂ)
106105mulid1d 10689 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘((adj𝑇)‘(𝑇𝑥))))
107106, 17eqtr4d 2797 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
108107adantr 485 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
109104, 108breqtrd 5059 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
110 remulcl 10653 . . . . . . . . . . . . 13 (((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11175, 38, 110sylancr 591 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
112111adantr 485 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11373nmbdoplbi 29899 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
114113adantr 485 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
11575, 72pm3.2i 475 . . . . . . . . . . . . . . 15 ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
116 lemul2a 11526 . . . . . . . . . . . . . . 15 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
117115, 116mp3anl3 1455 . . . . . . . . . . . . . 14 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11844, 117mpanl2 701 . . . . . . . . . . . . 13 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11938, 118sylan 584 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
12075recni 10686 . . . . . . . . . . . . 13 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℂ
121120mulid1i 10676 . . . . . . . . . . . 12 ((normop‘((adj𝑇) ∘ 𝑇)) · 1) = (normop‘((adj𝑇) ∘ 𝑇))
122119, 121breqtrdi 5074 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12395, 112, 88, 114, 122letrd 10828 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12487, 95, 88, 109, 123letrd 10828 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12585, 87, 88, 91, 124letrd 10828 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
126 resqcl 13533 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → ((norm‘(𝑇𝑥))↑2) ∈ ℝ)
127 sqge0 13544 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((norm‘(𝑇𝑥))↑2))
128126, 127absidd 14823 . . . . . . . . . . 11 ((norm‘(𝑇𝑥)) ∈ ℝ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
12919, 26, 1283syl 18 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
130 normsq 29009 . . . . . . . . . . . . 13 ((𝑇𝑥) ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
13119, 130syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
132 bdopadj 29957 . . . . . . . . . . . . . . . 16 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ dom adj)
1333, 132ax-mp 5 . . . . . . . . . . . . . . 15 (adj𝑇) ∈ dom adj
134 adj2 29809 . . . . . . . . . . . . . . 15 (((adj𝑇) ∈ dom adj ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
135133, 134mp3an1 1446 . . . . . . . . . . . . . 14 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
13619, 135mpancom 688 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
137 bdopadj 29957 . . . . . . . . . . . . . . . 16 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
138 adjadj 29811 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
1391, 137, 138mp2b 10 . . . . . . . . . . . . . . 15 (adj‘(adj𝑇)) = 𝑇
140139fveq1i 6660 . . . . . . . . . . . . . 14 ((adj‘(adj𝑇))‘𝑥) = (𝑇𝑥)
141140oveq2i 7162 . . . . . . . . . . . . 13 ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)) = ((𝑇𝑥) ·ih (𝑇𝑥))
142136, 141eqtr2di 2811 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((𝑇𝑥) ·ih (𝑇𝑥)) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
143131, 142eqtrd 2794 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
144143fveq2d 6663 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
145129, 144eqtr3d 2796 . . . . . . . . 9 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
146145adantr 485 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
14775sqsqrti 14776 . . . . . . . . . 10 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
1488, 71, 147mp2b 10 . . . . . . . . 9 ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇))
149148a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
150125, 146, 1493brtr4d 5065 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
151 normge0 29001 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
15219, 151syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
1538, 71, 76mp2b 10 . . . . . . . . . 10 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ
15475sqrtge0i 14777 . . . . . . . . . . 11 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
1558, 71, 154mp2b 10 . . . . . . . . . 10 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
156 le2sq 13542 . . . . . . . . . 10 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) ∧ ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
157153, 155, 156mpanr12 705 . . . . . . . . 9 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
15827, 152, 157syl2anc 588 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
159158adantr 485 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
160150, 159mpbird 260 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
161160ex 417 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
16280, 161mprgbir 3086 . . . 4 (normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
16310, 153le2sqi 13596 . . . . 5 ((0 ≤ (normop𝑇) ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
16446, 155, 163mp2an 692 . . . 4 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
165162, 164mpbi 233 . . 3 ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)
166165, 148breqtri 5058 . 2 ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))
16775, 11letri3i 10787 . 2 ((normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2) ↔ ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ∧ ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))))
16870, 166, 167mpbir2an 711 1 (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3071   class class class wbr 5033  dom cdm 5525  ccom 5529  wf 6332  cfv 6336  (class class class)co 7151  cc 10566  cr 10567  0cc0 10568  1c1 10569   · cmul 10573  *cxr 10705  cle 10707  2c2 11722  cexp 13472  csqrt 14633  abscabs 14634  chba 28794   ·ih csp 28797  normcno 28798  normopcnop 28820  BndLinOpcbo 28823  adjcado 28830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cc 9888  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648  ax-hilex 28874  ax-hfvadd 28875  ax-hvcom 28876  ax-hvass 28877  ax-hv0cl 28878  ax-hvaddid 28879  ax-hfvmul 28880  ax-hvmulid 28881  ax-hvmulass 28882  ax-hvdistr1 28883  ax-hvdistr2 28884  ax-hvmul0 28885  ax-hfi 28954  ax-his1 28957  ax-his2 28958  ax-his3 28959  ax-his4 28960  ax-hcompl 29077
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-omul 8118  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-card 9394  df-acn 9397  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-fl 13204  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-rlim 14887  df-sum 15084  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-rest 16747  df-topn 16748  df-0g 16766  df-gsum 16767  df-topgen 16768  df-pt 16769  df-prds 16772  df-xrs 16826  df-qtop 16831  df-imas 16832  df-xps 16834  df-mre 16908  df-mrc 16909  df-acs 16911  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-mulg 18285  df-cntz 18507  df-cmn 18968  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-fbas 20156  df-fg 20157  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-cn 21920  df-cnp 21921  df-lm 21922  df-t1 22007  df-haus 22008  df-tx 22255  df-hmeo 22448  df-fil 22539  df-fm 22631  df-flim 22632  df-flf 22633  df-xms 23015  df-ms 23016  df-tms 23017  df-cfil 23948  df-cau 23949  df-cmet 23950  df-grpo 28368  df-gid 28369  df-ginv 28370  df-gdiv 28371  df-ablo 28420  df-vc 28434  df-nv 28467  df-va 28470  df-ba 28471  df-sm 28472  df-0v 28473  df-vs 28474  df-nmcv 28475  df-ims 28476  df-dip 28576  df-ssp 28597  df-lno 28619  df-nmoo 28620  df-0o 28622  df-ph 28688  df-cbn 28738  df-hnorm 28843  df-hba 28844  df-hvsub 28846  df-hlim 28847  df-hcau 28848  df-sh 29082  df-ch 29096  df-oc 29127  df-ch0 29128  df-shs 29183  df-pjh 29270  df-h0op 29623  df-nmop 29714  df-cnop 29715  df-lnop 29716  df-bdop 29717  df-unop 29718  df-hmop 29719  df-nmfn 29720  df-nlfn 29721  df-cnfn 29722  df-lnfn 29723  df-adjh 29724
This theorem is referenced by:  nmopcoadj2i  29977
  Copyright terms: Public domain W3C validator