HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadji Structured version   Visualization version   GIF version

Theorem nmopcoadji 32028
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadji (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)

Proof of Theorem nmopcoadji
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmopcoadj.1 . . . . . . 7 𝑇 ∈ BndLinOp
2 adjbdlnb 32011 . . . . . . 7 (𝑇 ∈ BndLinOp ↔ (adj𝑇) ∈ BndLinOp)
31, 2mpbi 230 . . . . . 6 (adj𝑇) ∈ BndLinOp
4 bdopf 31789 . . . . . 6 ((adj𝑇) ∈ BndLinOp → (adj𝑇): ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . 5 (adj𝑇): ℋ⟶ ℋ
6 bdopf 31789 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
71, 6ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
85, 7hocofi 31693 . . . 4 ((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ
9 nmopre 31797 . . . . . . 7 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
101, 9ax-mp 5 . . . . . 6 (normop𝑇) ∈ ℝ
1110resqcli 14202 . . . . 5 ((normop𝑇)↑2) ∈ ℝ
12 rexr 11279 . . . . 5 (((normop𝑇)↑2) ∈ ℝ → ((normop𝑇)↑2) ∈ ℝ*)
1311, 12ax-mp 5 . . . 4 ((normop𝑇)↑2) ∈ ℝ*
14 nmopub 31835 . . . 4 ((((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ ∧ ((normop𝑇)↑2) ∈ ℝ*) → ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))))
158, 13, 14mp2an 692 . . 3 ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
165, 7hocoi 31691 . . . . . . . 8 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) = ((adj𝑇)‘(𝑇𝑥)))
1716fveq2d 6879 . . . . . . 7 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
1817adantr 480 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
197ffvelcdmi 7072 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
205ffvelcdmi 7072 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
21 normcl 31052 . . . . . . . . 9 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2219, 20, 213syl 18 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2322adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
24 nmopre 31797 . . . . . . . . . 10 ((adj𝑇) ∈ BndLinOp → (normop‘(adj𝑇)) ∈ ℝ)
253, 24ax-mp 5 . . . . . . . . 9 (normop‘(adj𝑇)) ∈ ℝ
26 normcl 31052 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2719, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
28 remulcl 11212 . . . . . . . . 9 (((normop‘(adj𝑇)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
2925, 27, 28sylancr 587 . . . . . . . 8 (𝑥 ∈ ℋ → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3029adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3125, 10remulcli 11249 . . . . . . . 8 ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ
3231a1i 11 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ)
333nmbdoplbi 31951 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3419, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3534adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3627adantr 480 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
3710a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop𝑇) ∈ ℝ)
38 normcl 31052 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
39 remulcl 11212 . . . . . . . . . . 11 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4010, 38, 39sylancr 587 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4140adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
421nmbdoplbi 31951 . . . . . . . . . 10 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
4342adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
44 1re 11233 . . . . . . . . . . . 12 1 ∈ ℝ
45 nmopge0 31838 . . . . . . . . . . . . . . 15 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
461, 6, 45mp2b 10 . . . . . . . . . . . . . 14 0 ≤ (normop𝑇)
4710, 46pm3.2i 470 . . . . . . . . . . . . 13 ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))
48 lemul2a 12094 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
4947, 48mp3anl3 1459 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5044, 49mpanl2 701 . . . . . . . . . . 11 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5138, 50sylan 580 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5210recni 11247 . . . . . . . . . . 11 (normop𝑇) ∈ ℂ
5352mulridi 11237 . . . . . . . . . 10 ((normop𝑇) · 1) = (normop𝑇)
5451, 53breqtrdi 5160 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ (normop𝑇))
5536, 41, 37, 43, 54letrd 11390 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
56 nmopge0 31838 . . . . . . . . . . 11 ((adj𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(adj𝑇)))
573, 4, 56mp2b 10 . . . . . . . . . 10 0 ≤ (normop‘(adj𝑇))
5825, 57pm3.2i 470 . . . . . . . . 9 ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))
59 lemul2a 12094 . . . . . . . . 9 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6058, 59mp3anl3 1459 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6136, 37, 55, 60syl21anc 837 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6223, 30, 32, 35, 61letrd 11390 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6318, 62eqbrtrd 5141 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
641nmopadji 32017 . . . . . . 7 (normop‘(adj𝑇)) = (normop𝑇)
6564oveq1i 7413 . . . . . 6 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇) · (normop𝑇))
6652sqvali 14196 . . . . . 6 ((normop𝑇)↑2) = ((normop𝑇) · (normop𝑇))
6765, 66eqtr4i 2761 . . . . 5 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇)↑2)
6863, 67breqtrdi 5160 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))
6968ex 412 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
7015, 69mprgbir 3058 . 2 (normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2)
71 nmopge0 31838 . . . . . . . 8 (((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
728, 71ax-mp 5 . . . . . . 7 0 ≤ (normop‘((adj𝑇) ∘ 𝑇))
733, 1bdopcoi 32025 . . . . . . . . 9 ((adj𝑇) ∘ 𝑇) ∈ BndLinOp
74 nmopre 31797 . . . . . . . . 9 (((adj𝑇) ∘ 𝑇) ∈ BndLinOp → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
7573, 74ax-mp 5 . . . . . . . 8 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ
7675sqrtcli 15388 . . . . . . 7 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ)
77 rexr 11279 . . . . . . 7 ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*)
7872, 76, 77mp2b 10 . . . . . 6 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*
79 nmopub 31835 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))))
807, 78, 79mp2an 692 . . . . 5 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
8119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
82 hicl 31007 . . . . . . . . . . . 12 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8381, 82mpancom 688 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8483abscld 15453 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8584adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8622, 38remulcld 11263 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8786adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8875a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
89 bcs 31108 . . . . . . . . . . 11 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9081, 89mpancom 688 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9190adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
925, 7hococli 31692 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ)
93 normcl 31052 . . . . . . . . . . . 12 ((((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9492, 93syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9594adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9638adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
97 normge0 31053 . . . . . . . . . . . . . . 15 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9819, 20, 973syl 18 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9922, 98jca 511 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
10099adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
101 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
102 lemul2a 12094 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10344, 102mp3anl2 1458 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10496, 100, 101, 103syl21anc 837 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10522recnd 11261 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℂ)
106105mulridd 11250 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘((adj𝑇)‘(𝑇𝑥))))
107106, 17eqtr4d 2773 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
108107adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
109104, 108breqtrd 5145 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
110 remulcl 11212 . . . . . . . . . . . . 13 (((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11175, 38, 110sylancr 587 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
112111adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11373nmbdoplbi 31951 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
114113adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
11575, 72pm3.2i 470 . . . . . . . . . . . . . . 15 ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
116 lemul2a 12094 . . . . . . . . . . . . . . 15 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
117115, 116mp3anl3 1459 . . . . . . . . . . . . . 14 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11844, 117mpanl2 701 . . . . . . . . . . . . 13 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11938, 118sylan 580 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
12075recni 11247 . . . . . . . . . . . . 13 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℂ
121120mulridi 11237 . . . . . . . . . . . 12 ((normop‘((adj𝑇) ∘ 𝑇)) · 1) = (normop‘((adj𝑇) ∘ 𝑇))
122119, 121breqtrdi 5160 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12395, 112, 88, 114, 122letrd 11390 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12487, 95, 88, 109, 123letrd 11390 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12585, 87, 88, 91, 124letrd 11390 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
126 resqcl 14140 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → ((norm‘(𝑇𝑥))↑2) ∈ ℝ)
127 sqge0 14152 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((norm‘(𝑇𝑥))↑2))
128126, 127absidd 15439 . . . . . . . . . . 11 ((norm‘(𝑇𝑥)) ∈ ℝ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
12919, 26, 1283syl 18 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
130 normsq 31061 . . . . . . . . . . . . 13 ((𝑇𝑥) ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
13119, 130syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
132 bdopadj 32009 . . . . . . . . . . . . . . . 16 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ dom adj)
1333, 132ax-mp 5 . . . . . . . . . . . . . . 15 (adj𝑇) ∈ dom adj
134 adj2 31861 . . . . . . . . . . . . . . 15 (((adj𝑇) ∈ dom adj ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
135133, 134mp3an1 1450 . . . . . . . . . . . . . 14 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
13619, 135mpancom 688 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
137 bdopadj 32009 . . . . . . . . . . . . . . . 16 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
138 adjadj 31863 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
1391, 137, 138mp2b 10 . . . . . . . . . . . . . . 15 (adj‘(adj𝑇)) = 𝑇
140139fveq1i 6876 . . . . . . . . . . . . . 14 ((adj‘(adj𝑇))‘𝑥) = (𝑇𝑥)
141140oveq2i 7414 . . . . . . . . . . . . 13 ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)) = ((𝑇𝑥) ·ih (𝑇𝑥))
142136, 141eqtr2di 2787 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((𝑇𝑥) ·ih (𝑇𝑥)) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
143131, 142eqtrd 2770 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
144143fveq2d 6879 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
145129, 144eqtr3d 2772 . . . . . . . . 9 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
146145adantr 480 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
14775sqsqrti 15392 . . . . . . . . . 10 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
1488, 71, 147mp2b 10 . . . . . . . . 9 ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇))
149148a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
150125, 146, 1493brtr4d 5151 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
151 normge0 31053 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
15219, 151syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
1538, 71, 76mp2b 10 . . . . . . . . . 10 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ
15475sqrtge0i 15393 . . . . . . . . . . 11 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
1558, 71, 154mp2b 10 . . . . . . . . . 10 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
156 le2sq 14150 . . . . . . . . . 10 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) ∧ ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
157153, 155, 156mpanr12 705 . . . . . . . . 9 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
15827, 152, 157syl2anc 584 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
159158adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
160150, 159mpbird 257 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
161160ex 412 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
16280, 161mprgbir 3058 . . . 4 (normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
16310, 153le2sqi 14206 . . . . 5 ((0 ≤ (normop𝑇) ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
16446, 155, 163mp2an 692 . . . 4 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
165162, 164mpbi 230 . . 3 ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)
166165, 148breqtri 5144 . 2 ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))
16775, 11letri3i 11349 . 2 ((normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2) ↔ ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ∧ ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))))
16870, 166, 167mpbir2an 711 1 (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  dom cdm 5654  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  *cxr 11266  cle 11268  2c2 12293  cexp 14077  csqrt 15250  abscabs 15251  chba 30846   ·ih csp 30849  normcno 30850  normopcnop 30872  BndLinOpcbo 30875  adjcado 30882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012  ax-hcompl 31129
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-cn 23163  df-cnp 23164  df-lm 23165  df-t1 23250  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cfil 25205  df-cau 25206  df-cmet 25207  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-dip 30628  df-ssp 30649  df-lno 30671  df-nmoo 30672  df-0o 30674  df-ph 30740  df-cbn 30790  df-hnorm 30895  df-hba 30896  df-hvsub 30898  df-hlim 30899  df-hcau 30900  df-sh 31134  df-ch 31148  df-oc 31179  df-ch0 31180  df-shs 31235  df-pjh 31322  df-h0op 31675  df-nmop 31766  df-cnop 31767  df-lnop 31768  df-bdop 31769  df-unop 31770  df-hmop 31771  df-nmfn 31772  df-nlfn 31773  df-cnfn 31774  df-lnfn 31775  df-adjh 31776
This theorem is referenced by:  nmopcoadj2i  32029
  Copyright terms: Public domain W3C validator