HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadji Structured version   Visualization version   GIF version

Theorem nmopcoadji 32081
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadji (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)

Proof of Theorem nmopcoadji
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmopcoadj.1 . . . . . . 7 𝑇 ∈ BndLinOp
2 adjbdlnb 32064 . . . . . . 7 (𝑇 ∈ BndLinOp ↔ (adj𝑇) ∈ BndLinOp)
31, 2mpbi 230 . . . . . 6 (adj𝑇) ∈ BndLinOp
4 bdopf 31842 . . . . . 6 ((adj𝑇) ∈ BndLinOp → (adj𝑇): ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . 5 (adj𝑇): ℋ⟶ ℋ
6 bdopf 31842 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
71, 6ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
85, 7hocofi 31746 . . . 4 ((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ
9 nmopre 31850 . . . . . . 7 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
101, 9ax-mp 5 . . . . . 6 (normop𝑇) ∈ ℝ
1110resqcli 14129 . . . . 5 ((normop𝑇)↑2) ∈ ℝ
12 rexr 11198 . . . . 5 (((normop𝑇)↑2) ∈ ℝ → ((normop𝑇)↑2) ∈ ℝ*)
1311, 12ax-mp 5 . . . 4 ((normop𝑇)↑2) ∈ ℝ*
14 nmopub 31888 . . . 4 ((((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ ∧ ((normop𝑇)↑2) ∈ ℝ*) → ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))))
158, 13, 14mp2an 692 . . 3 ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
165, 7hocoi 31744 . . . . . . . 8 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) = ((adj𝑇)‘(𝑇𝑥)))
1716fveq2d 6844 . . . . . . 7 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
1817adantr 480 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) = (norm‘((adj𝑇)‘(𝑇𝑥))))
197ffvelcdmi 7037 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
205ffvelcdmi 7037 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
21 normcl 31105 . . . . . . . . 9 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2219, 20, 213syl 18 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
2322adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ)
24 nmopre 31850 . . . . . . . . . 10 ((adj𝑇) ∈ BndLinOp → (normop‘(adj𝑇)) ∈ ℝ)
253, 24ax-mp 5 . . . . . . . . 9 (normop‘(adj𝑇)) ∈ ℝ
26 normcl 31105 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2719, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
28 remulcl 11131 . . . . . . . . 9 (((normop‘(adj𝑇)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
2925, 27, 28sylancr 587 . . . . . . . 8 (𝑥 ∈ ℋ → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3029adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ∈ ℝ)
3125, 10remulcli 11168 . . . . . . . 8 ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ
3231a1i 11 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (normop𝑇)) ∈ ℝ)
333nmbdoplbi 32004 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3419, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3534adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))))
3627adantr 480 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
3710a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop𝑇) ∈ ℝ)
38 normcl 31105 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
39 remulcl 11131 . . . . . . . . . . 11 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4010, 38, 39sylancr 587 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
4140adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
421nmbdoplbi 32004 . . . . . . . . . 10 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
4342adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
44 1re 11152 . . . . . . . . . . . 12 1 ∈ ℝ
45 nmopge0 31891 . . . . . . . . . . . . . . 15 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
461, 6, 45mp2b 10 . . . . . . . . . . . . . 14 0 ≤ (normop𝑇)
4710, 46pm3.2i 470 . . . . . . . . . . . . 13 ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))
48 lemul2a 12015 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇))) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
4947, 48mp3anl3 1459 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5044, 49mpanl2 701 . . . . . . . . . . 11 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5138, 50sylan 580 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ ((normop𝑇) · 1))
5210recni 11166 . . . . . . . . . . 11 (normop𝑇) ∈ ℂ
5352mulridi 11156 . . . . . . . . . 10 ((normop𝑇) · 1) = (normop𝑇)
5451, 53breqtrdi 5143 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑇) · (norm𝑥)) ≤ (normop𝑇))
5536, 41, 37, 43, 54letrd 11309 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
56 nmopge0 31891 . . . . . . . . . . 11 ((adj𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(adj𝑇)))
573, 4, 56mp2b 10 . . . . . . . . . 10 0 ≤ (normop‘(adj𝑇))
5825, 57pm3.2i 470 . . . . . . . . 9 ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))
59 lemul2a 12015 . . . . . . . . 9 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((normop‘(adj𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘(adj𝑇)))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6058, 59mp3anl3 1459 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6136, 37, 55, 60syl21anc 837 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘(adj𝑇)) · (norm‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6223, 30, 32, 35, 61letrd 11309 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((adj𝑇)‘(𝑇𝑥))) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
6318, 62eqbrtrd 5124 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘(adj𝑇)) · (normop𝑇)))
641nmopadji 32070 . . . . . . 7 (normop‘(adj𝑇)) = (normop𝑇)
6564oveq1i 7379 . . . . . 6 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇) · (normop𝑇))
6652sqvali 14123 . . . . . 6 ((normop𝑇)↑2) = ((normop𝑇) · (normop𝑇))
6765, 66eqtr4i 2755 . . . . 5 ((normop‘(adj𝑇)) · (normop𝑇)) = ((normop𝑇)↑2)
6863, 67breqtrdi 5143 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2))
6968ex 412 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop𝑇)↑2)))
7015, 69mprgbir 3051 . 2 (normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2)
71 nmopge0 31891 . . . . . . . 8 (((adj𝑇) ∘ 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
728, 71ax-mp 5 . . . . . . 7 0 ≤ (normop‘((adj𝑇) ∘ 𝑇))
733, 1bdopcoi 32078 . . . . . . . . 9 ((adj𝑇) ∘ 𝑇) ∈ BndLinOp
74 nmopre 31850 . . . . . . . . 9 (((adj𝑇) ∘ 𝑇) ∈ BndLinOp → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
7573, 74ax-mp 5 . . . . . . . 8 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ
7675sqrtcli 15315 . . . . . . 7 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ)
77 rexr 11198 . . . . . . 7 ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ → (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*)
7872, 76, 77mp2b 10 . . . . . 6 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*
79 nmopub 31888 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ*) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))))
807, 78, 79mp2an 692 . . . . 5 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
8119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((adj𝑇)‘(𝑇𝑥)) ∈ ℋ)
82 hicl 31060 . . . . . . . . . . . 12 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8381, 82mpancom 688 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) ∈ ℂ)
8483abscld 15382 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8584adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ∈ ℝ)
8622, 38remulcld 11182 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8786adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ∈ ℝ)
8875a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ)
89 bcs 31161 . . . . . . . . . . 11 ((((adj𝑇)‘(𝑇𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9081, 89mpancom 688 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
9190adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)))
925, 7hococli 31745 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ)
93 normcl 31105 . . . . . . . . . . . 12 ((((adj𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9492, 93syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9594adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ)
9638adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
97 normge0 31106 . . . . . . . . . . . . . . 15 (((adj𝑇)‘(𝑇𝑥)) ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9819, 20, 973syl 18 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))
9922, 98jca 511 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
10099adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥)))))
101 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
102 lemul2a 12015 . . . . . . . . . . . . 13 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10344, 102mp3anl2 1458 . . . . . . . . . . . 12 ((((norm𝑥) ∈ ℝ ∧ ((norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℝ ∧ 0 ≤ (norm‘((adj𝑇)‘(𝑇𝑥))))) ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10496, 100, 101, 103syl21anc 837 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1))
10522recnd 11180 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((adj𝑇)‘(𝑇𝑥))) ∈ ℂ)
106105mulridd 11169 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘((adj𝑇)‘(𝑇𝑥))))
107106, 17eqtr4d 2767 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
108107adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · 1) = (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
109104, 108breqtrd 5128 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)))
110 remulcl 11131 . . . . . . . . . . . . 13 (((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11175, 38, 110sylancr 587 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
112111adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ∈ ℝ)
11373nmbdoplbi 32004 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
114113adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)))
11575, 72pm3.2i 470 . . . . . . . . . . . . . . 15 ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))
116 lemul2a 12015 . . . . . . . . . . . . . . 15 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop‘((adj𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤ (normop‘((adj𝑇) ∘ 𝑇)))) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
117115, 116mp3anl3 1459 . . . . . . . . . . . . . 14 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11844, 117mpanl2 701 . . . . . . . . . . . . 13 (((norm𝑥) ∈ ℝ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
11938, 118sylan 580 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ ((normop‘((adj𝑇) ∘ 𝑇)) · 1))
12075recni 11166 . . . . . . . . . . . . 13 (normop‘((adj𝑇) ∘ 𝑇)) ∈ ℂ
121120mulridi 11156 . . . . . . . . . . . 12 ((normop‘((adj𝑇) ∘ 𝑇)) · 1) = (normop‘((adj𝑇) ∘ 𝑇))
122119, 121breqtrdi 5143 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop‘((adj𝑇) ∘ 𝑇)) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12395, 112, 88, 114, 122letrd 11309 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(((adj𝑇) ∘ 𝑇)‘𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12487, 95, 88, 109, 123letrd 11309 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘((adj𝑇)‘(𝑇𝑥))) · (norm𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
12585, 87, 88, 91, 124letrd 11309 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)) ≤ (normop‘((adj𝑇) ∘ 𝑇)))
126 resqcl 14067 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → ((norm‘(𝑇𝑥))↑2) ∈ ℝ)
127 sqge0 14079 . . . . . . . . . . . 12 ((norm‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((norm‘(𝑇𝑥))↑2))
128126, 127absidd 15366 . . . . . . . . . . 11 ((norm‘(𝑇𝑥)) ∈ ℝ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
12919, 26, 1283syl 18 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = ((norm‘(𝑇𝑥))↑2))
130 normsq 31114 . . . . . . . . . . . . 13 ((𝑇𝑥) ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
13119, 130syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = ((𝑇𝑥) ·ih (𝑇𝑥)))
132 bdopadj 32062 . . . . . . . . . . . . . . . 16 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ dom adj)
1333, 132ax-mp 5 . . . . . . . . . . . . . . 15 (adj𝑇) ∈ dom adj
134 adj2 31914 . . . . . . . . . . . . . . 15 (((adj𝑇) ∈ dom adj ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
135133, 134mp3an1 1450 . . . . . . . . . . . . . 14 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
13619, 135mpancom 688 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥) = ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)))
137 bdopadj 32062 . . . . . . . . . . . . . . . 16 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
138 adjadj 31916 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
1391, 137, 138mp2b 10 . . . . . . . . . . . . . . 15 (adj‘(adj𝑇)) = 𝑇
140139fveq1i 6841 . . . . . . . . . . . . . 14 ((adj‘(adj𝑇))‘𝑥) = (𝑇𝑥)
141140oveq2i 7380 . . . . . . . . . . . . 13 ((𝑇𝑥) ·ih ((adj‘(adj𝑇))‘𝑥)) = ((𝑇𝑥) ·ih (𝑇𝑥))
142136, 141eqtr2di 2781 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((𝑇𝑥) ·ih (𝑇𝑥)) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
143131, 142eqtrd 2764 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥))
144143fveq2d 6844 . . . . . . . . . 10 (𝑥 ∈ ℋ → (abs‘((norm‘(𝑇𝑥))↑2)) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
145129, 144eqtr3d 2766 . . . . . . . . 9 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
146145adantr 480 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) = (abs‘(((adj𝑇)‘(𝑇𝑥)) ·ih 𝑥)))
14775sqsqrti 15319 . . . . . . . . . 10 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
1488, 71, 147mp2b 10 . . . . . . . . 9 ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇))
149148a1i 11 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2) = (normop‘((adj𝑇) ∘ 𝑇)))
150125, 146, 1493brtr4d 5134 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
151 normge0 31106 . . . . . . . . . 10 ((𝑇𝑥) ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
15219, 151syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm‘(𝑇𝑥)))
1538, 71, 76mp2b 10 . . . . . . . . . 10 (√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ
15475sqrtge0i 15320 . . . . . . . . . . 11 (0 ≤ (normop‘((adj𝑇) ∘ 𝑇)) → 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
1558, 71, 154mp2b 10 . . . . . . . . . 10 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
156 le2sq 14077 . . . . . . . . . 10 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) ∧ ((√‘(normop‘((adj𝑇) ∘ 𝑇))) ∈ ℝ ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
157153, 155, 156mpanr12 705 . . . . . . . . 9 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑇𝑥))) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
15827, 152, 157syl2anc 584 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
159158adantr 480 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((norm‘(𝑇𝑥))↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
160150, 159mpbird 257 . . . . . 6 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))))
161160ex 412 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))))
16280, 161mprgbir 3051 . . . 4 (normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))
16310, 153le2sqi 14133 . . . . 5 ((0 ≤ (normop𝑇) ∧ 0 ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇)))) → ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)))
16446, 155, 163mp2an 692 . . . 4 ((normop𝑇) ≤ (√‘(normop‘((adj𝑇) ∘ 𝑇))) ↔ ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2))
165162, 164mpbi 230 . . 3 ((normop𝑇)↑2) ≤ ((√‘(normop‘((adj𝑇) ∘ 𝑇)))↑2)
166165, 148breqtri 5127 . 2 ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))
16775, 11letri3i 11268 . 2 ((normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2) ↔ ((normop‘((adj𝑇) ∘ 𝑇)) ≤ ((normop𝑇)↑2) ∧ ((normop𝑇)↑2) ≤ (normop‘((adj𝑇) ∘ 𝑇))))
16870, 166, 167mpbir2an 711 1 (normop‘((adj𝑇) ∘ 𝑇)) = ((normop𝑇)↑2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  dom cdm 5631  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  1c1 11047   · cmul 11051  *cxr 11185  cle 11187  2c2 12219  cexp 14004  csqrt 15176  abscabs 15177  chba 30899   ·ih csp 30902  normcno 30903  normopcnop 30925  BndLinOpcbo 30928  adjcado 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cc 10366  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125  ax-mulf 11126  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065  ax-hcompl 31182
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-acn 9873  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15431  df-rlim 15432  df-sum 15630  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-cn 23148  df-cnp 23149  df-lm 23150  df-t1 23235  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cfil 25189  df-cau 25190  df-cmet 25191  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-dip 30681  df-ssp 30702  df-lno 30724  df-nmoo 30725  df-0o 30727  df-ph 30793  df-cbn 30843  df-hnorm 30948  df-hba 30949  df-hvsub 30951  df-hlim 30952  df-hcau 30953  df-sh 31187  df-ch 31201  df-oc 31232  df-ch0 31233  df-shs 31288  df-pjh 31375  df-h0op 31728  df-nmop 31819  df-cnop 31820  df-lnop 31821  df-bdop 31822  df-unop 31823  df-hmop 31824  df-nmfn 31825  df-nlfn 31826  df-cnfn 31827  df-lnfn 31828  df-adjh 31829
This theorem is referenced by:  nmopcoadj2i  32082
  Copyright terms: Public domain W3C validator