Step | Hyp | Ref
| Expression |
1 | | nmopcoadj.1 |
. . . . . . 7
⊢ 𝑇 ∈
BndLinOp |
2 | | adjbdlnb 29959 |
. . . . . . 7
⊢ (𝑇 ∈ BndLinOp ↔
(adjℎ‘𝑇) ∈ BndLinOp) |
3 | 1, 2 | mpbi 233 |
. . . . . 6
⊢
(adjℎ‘𝑇) ∈ BndLinOp |
4 | | bdopf 29737 |
. . . . . 6
⊢
((adjℎ‘𝑇) ∈ BndLinOp →
(adjℎ‘𝑇): ℋ⟶ ℋ) |
5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢
(adjℎ‘𝑇): ℋ⟶ ℋ |
6 | | bdopf 29737 |
. . . . . 6
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶
ℋ) |
7 | 1, 6 | ax-mp 5 |
. . . . 5
⊢ 𝑇: ℋ⟶
ℋ |
8 | 5, 7 | hocofi 29641 |
. . . 4
⊢
((adjℎ‘𝑇) ∘ 𝑇): ℋ⟶ ℋ |
9 | | nmopre 29745 |
. . . . . . 7
⊢ (𝑇 ∈ BndLinOp →
(normop‘𝑇)
∈ ℝ) |
10 | 1, 9 | ax-mp 5 |
. . . . . 6
⊢
(normop‘𝑇) ∈ ℝ |
11 | 10 | resqcli 13592 |
. . . . 5
⊢
((normop‘𝑇)↑2) ∈ ℝ |
12 | | rexr 10718 |
. . . . 5
⊢
(((normop‘𝑇)↑2) ∈ ℝ →
((normop‘𝑇)↑2) ∈
ℝ*) |
13 | 11, 12 | ax-mp 5 |
. . . 4
⊢
((normop‘𝑇)↑2) ∈
ℝ* |
14 | | nmopub 29783 |
. . . 4
⊢
((((adjℎ‘𝑇) ∘ 𝑇): ℋ⟶ ℋ ∧
((normop‘𝑇)↑2) ∈ ℝ*) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ≤ ((normop‘𝑇)↑2) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑇)↑2)))) |
15 | 8, 13, 14 | mp2an 692 |
. . 3
⊢
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ≤ ((normop‘𝑇)↑2) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑇)↑2))) |
16 | 5, 7 | hocoi 29639 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥) = ((adjℎ‘𝑇)‘(𝑇‘𝑥))) |
17 | 16 | fveq2d 6663 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) =
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥)))) |
18 | 17 | adantr 485 |
. . . . . 6
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) =
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥)))) |
19 | 7 | ffvelrni 6842 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
20 | 5 | ffvelrni 6842 |
. . . . . . . . 9
⊢ ((𝑇‘𝑥) ∈ ℋ →
((adjℎ‘𝑇)‘(𝑇‘𝑥)) ∈ ℋ) |
21 | | normcl 29000 |
. . . . . . . . 9
⊢
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ∈ ℋ →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ) |
22 | 19, 20, 21 | 3syl 18 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ) |
23 | 22 | adantr 485 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ) |
24 | | nmopre 29745 |
. . . . . . . . . 10
⊢
((adjℎ‘𝑇) ∈ BndLinOp →
(normop‘(adjℎ‘𝑇)) ∈ ℝ) |
25 | 3, 24 | ax-mp 5 |
. . . . . . . . 9
⊢
(normop‘(adjℎ‘𝑇)) ∈ ℝ |
26 | | normcl 29000 |
. . . . . . . . . 10
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
27 | 19, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
28 | | remulcl 10653 |
. . . . . . . . 9
⊢
(((normop‘(adjℎ‘𝑇)) ∈ ℝ ∧
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) →
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥))) ∈ ℝ) |
29 | 25, 27, 28 | sylancr 591 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥))) ∈ ℝ) |
30 | 29 | adantr 485 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥))) ∈ ℝ) |
31 | 25, 10 | remulcli 10688 |
. . . . . . . 8
⊢
((normop‘(adjℎ‘𝑇)) ·
(normop‘𝑇)) ∈ ℝ |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘(adjℎ‘𝑇)) · (normop‘𝑇)) ∈
ℝ) |
33 | 3 | nmbdoplbi 29899 |
. . . . . . . . 9
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) |
34 | 19, 33 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) |
35 | 34 | adantr 485 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) |
36 | 27 | adantr 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
37 | 10 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normop‘𝑇)
∈ ℝ) |
38 | | normcl 29000 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℝ) |
39 | | remulcl 10653 |
. . . . . . . . . . 11
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘𝑥) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
40 | 10, 38, 39 | sylancr 591 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
41 | 40 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
42 | 1 | nmbdoplbi 29899 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) |
43 | 42 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) |
44 | | 1re 10672 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
45 | | nmopge0 29786 |
. . . . . . . . . . . . . . 15
⊢ (𝑇: ℋ⟶ ℋ →
0 ≤ (normop‘𝑇)) |
46 | 1, 6, 45 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
(normop‘𝑇) |
47 | 10, 46 | pm3.2i 475 |
. . . . . . . . . . . . 13
⊢
((normop‘𝑇) ∈ ℝ ∧ 0 ≤
(normop‘𝑇)) |
48 | | lemul2a 11526 |
. . . . . . . . . . . . 13
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧
((normop‘𝑇) ∈ ℝ ∧ 0 ≤
(normop‘𝑇))) ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ≤ ((normop‘𝑇) · 1)) |
49 | 47, 48 | mp3anl3 1455 |
. . . . . . . . . . . 12
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ)
∧ (normℎ‘𝑥) ≤ 1) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ≤ ((normop‘𝑇) · 1)) |
50 | 44, 49 | mpanl2 701 |
. . . . . . . . . . 11
⊢
(((normℎ‘𝑥) ∈ ℝ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ≤ ((normop‘𝑇) · 1)) |
51 | 38, 50 | sylan 584 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ≤ ((normop‘𝑇) · 1)) |
52 | 10 | recni 10686 |
. . . . . . . . . . 11
⊢
(normop‘𝑇) ∈ ℂ |
53 | 52 | mulid1i 10676 |
. . . . . . . . . 10
⊢
((normop‘𝑇) · 1) =
(normop‘𝑇) |
54 | 51, 53 | breqtrdi 5074 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ≤ (normop‘𝑇)) |
55 | 36, 41, 37, 43, 54 | letrd 10828 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) |
56 | | nmopge0 29786 |
. . . . . . . . . . 11
⊢
((adjℎ‘𝑇): ℋ⟶ ℋ → 0 ≤
(normop‘(adjℎ‘𝑇))) |
57 | 3, 4, 56 | mp2b 10 |
. . . . . . . . . 10
⊢ 0 ≤
(normop‘(adjℎ‘𝑇)) |
58 | 25, 57 | pm3.2i 475 |
. . . . . . . . 9
⊢
((normop‘(adjℎ‘𝑇)) ∈ ℝ ∧ 0 ≤
(normop‘(adjℎ‘𝑇))) |
59 | | lemul2a 11526 |
. . . . . . . . 9
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧
(normop‘𝑇)
∈ ℝ ∧
((normop‘(adjℎ‘𝑇)) ∈ ℝ ∧ 0 ≤
(normop‘(adjℎ‘𝑇)))) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) →
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) · (normop‘𝑇))) |
60 | 58, 59 | mp3anl3 1455 |
. . . . . . . 8
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧
(normop‘𝑇)
∈ ℝ) ∧ (normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) →
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) · (normop‘𝑇))) |
61 | 36, 37, 55, 60 | syl21anc 837 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘(adjℎ‘𝑇)) ·
(normℎ‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) · (normop‘𝑇))) |
62 | 23, 30, 32, 35, 61 | letrd 10828 |
. . . . . 6
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ≤
((normop‘(adjℎ‘𝑇)) · (normop‘𝑇))) |
63 | 18, 62 | eqbrtrd 5055 |
. . . . 5
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤
((normop‘(adjℎ‘𝑇)) · (normop‘𝑇))) |
64 | 1 | nmopadji 29965 |
. . . . . . 7
⊢
(normop‘(adjℎ‘𝑇)) = (normop‘𝑇) |
65 | 64 | oveq1i 7161 |
. . . . . 6
⊢
((normop‘(adjℎ‘𝑇)) ·
(normop‘𝑇)) = ((normop‘𝑇) ·
(normop‘𝑇)) |
66 | 52 | sqvali 13586 |
. . . . . 6
⊢
((normop‘𝑇)↑2) = ((normop‘𝑇) ·
(normop‘𝑇)) |
67 | 65, 66 | eqtr4i 2785 |
. . . . 5
⊢
((normop‘(adjℎ‘𝑇)) ·
(normop‘𝑇)) = ((normop‘𝑇)↑2) |
68 | 63, 67 | breqtrdi 5074 |
. . . 4
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑇)↑2)) |
69 | 68 | ex 417 |
. . 3
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑇)↑2))) |
70 | 15, 69 | mprgbir 3086 |
. 2
⊢
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) ≤ ((normop‘𝑇)↑2) |
71 | | nmopge0 29786 |
. . . . . . . 8
⊢
(((adjℎ‘𝑇) ∘ 𝑇): ℋ⟶ ℋ → 0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
72 | 8, 71 | ax-mp 5 |
. . . . . . 7
⊢ 0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) |
73 | 3, 1 | bdopcoi 29973 |
. . . . . . . . 9
⊢
((adjℎ‘𝑇) ∘ 𝑇) ∈ BndLinOp |
74 | | nmopre 29745 |
. . . . . . . . 9
⊢
(((adjℎ‘𝑇) ∘ 𝑇) ∈ BndLinOp →
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℝ) |
75 | 73, 74 | ax-mp 5 |
. . . . . . . 8
⊢
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℝ |
76 | 75 | sqrtcli 14772 |
. . . . . . 7
⊢ (0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) →
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ) |
77 | | rexr 10718 |
. . . . . . 7
⊢
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ →
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ*) |
78 | 72, 76, 77 | mp2b 10 |
. . . . . 6
⊢
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ* |
79 | | nmopub 29783 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ*) →
((normop‘𝑇) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))))) |
80 | 7, 78, 79 | mp2an 692 |
. . . . 5
⊢
((normop‘𝑇) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))))) |
81 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((adjℎ‘𝑇)‘(𝑇‘𝑥)) ∈ ℋ) |
82 | | hicl 28955 |
. . . . . . . . . . . 12
⊢
((((adjℎ‘𝑇)‘(𝑇‘𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) →
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥) ∈
ℂ) |
83 | 81, 82 | mpancom 688 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥) ∈
ℂ) |
84 | 83 | abscld 14837 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) ∈
ℝ) |
85 | 84 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) ∈
ℝ) |
86 | 22, 38 | remulcld 10702 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ∈ ℝ) |
87 | 86 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ∈ ℝ) |
88 | 75 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℝ) |
89 | | bcs 29056 |
. . . . . . . . . . 11
⊢
((((adjℎ‘𝑇)‘(𝑇‘𝑥)) ∈ ℋ ∧ 𝑥 ∈ ℋ) →
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) ≤
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥))) |
90 | 81, 89 | mpancom 688 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) ≤
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥))) |
91 | 90 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) ≤
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥))) |
92 | 5, 7 | hococli 29640 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ) |
93 | | normcl 29000 |
. . . . . . . . . . . 12
⊢
((((adjℎ‘𝑇) ∘ 𝑇)‘𝑥) ∈ ℋ →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ) |
95 | 94 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ∈ ℝ) |
96 | 38 | adantr 485 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘𝑥) ∈ ℝ) |
97 | | normge0 29001 |
. . . . . . . . . . . . . . 15
⊢
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ∈ ℋ → 0 ≤
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥)))) |
98 | 19, 20, 97 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ → 0 ≤
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥)))) |
99 | 22, 98 | jca 516 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ ∧ 0 ≤
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))))) |
100 | 99 | adantr 485 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ ∧ 0 ≤
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))))) |
101 | | simpr 489 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘𝑥) ≤ 1) |
102 | | lemul2a 11526 |
. . . . . . . . . . . . 13
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ ∧ 0 ≤
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))))) ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ≤
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) · 1)) |
103 | 44, 102 | mp3anl2 1454 |
. . . . . . . . . . . 12
⊢
((((normℎ‘𝑥) ∈ ℝ ∧
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℝ ∧ 0 ≤
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))))) ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ≤
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) · 1)) |
104 | 96, 100, 101, 103 | syl21anc 837 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ≤
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) · 1)) |
105 | 22 | recnd 10700 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ →
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ∈ ℂ) |
106 | 105 | mulid1d 10689 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) · 1) =
(normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥)))) |
107 | 106, 17 | eqtr4d 2797 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) · 1) =
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥))) |
108 | 107 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) · 1) =
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥))) |
109 | 104, 108 | breqtrd 5059 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ≤
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥))) |
110 | | remulcl 10653 |
. . . . . . . . . . . . 13
⊢
(((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℝ ∧
(normℎ‘𝑥) ∈ ℝ) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ∈ ℝ) |
111 | 75, 38, 110 | sylancr 591 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ∈ ℝ) |
112 | 111 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ∈ ℝ) |
113 | 73 | nmbdoplbi 29899 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥))) |
114 | 113 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥))) |
115 | 75, 72 | pm3.2i 475 |
. . . . . . . . . . . . . . 15
⊢
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
116 | | lemul2a 11526 |
. . . . . . . . . . . . . . 15
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℝ ∧ 0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)))) ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ≤
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) · 1)) |
117 | 115, 116 | mp3anl3 1455 |
. . . . . . . . . . . . . 14
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ)
∧ (normℎ‘𝑥) ≤ 1) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ≤
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) · 1)) |
118 | 44, 117 | mpanl2 701 |
. . . . . . . . . . . . 13
⊢
(((normℎ‘𝑥) ∈ ℝ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ≤
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) · 1)) |
119 | 38, 118 | sylan 584 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ≤
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) · 1)) |
120 | 75 | recni 10686 |
. . . . . . . . . . . . 13
⊢
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) ∈ ℂ |
121 | 120 | mulid1i 10676 |
. . . . . . . . . . . 12
⊢
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) · 1) =
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) |
122 | 119, 121 | breqtrdi 5074 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ·
(normℎ‘𝑥)) ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
123 | 95, 112, 88, 114, 122 | letrd 10828 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(((adjℎ‘𝑇) ∘ 𝑇)‘𝑥)) ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
124 | 87, 95, 88, 109, 123 | letrd 10828 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘((adjℎ‘𝑇)‘(𝑇‘𝑥))) ·
(normℎ‘𝑥)) ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
125 | 85, 87, 88, 91, 124 | letrd 10828 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
126 | | resqcl 13533 |
. . . . . . . . . . . 12
⊢
((normℎ‘(𝑇‘𝑥)) ∈ ℝ →
((normℎ‘(𝑇‘𝑥))↑2) ∈ ℝ) |
127 | | sqge0 13544 |
. . . . . . . . . . . 12
⊢
((normℎ‘(𝑇‘𝑥)) ∈ ℝ → 0 ≤
((normℎ‘(𝑇‘𝑥))↑2)) |
128 | 126, 127 | absidd 14823 |
. . . . . . . . . . 11
⊢
((normℎ‘(𝑇‘𝑥)) ∈ ℝ →
(abs‘((normℎ‘(𝑇‘𝑥))↑2)) =
((normℎ‘(𝑇‘𝑥))↑2)) |
129 | 19, 26, 128 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
(abs‘((normℎ‘(𝑇‘𝑥))↑2)) =
((normℎ‘(𝑇‘𝑥))↑2)) |
130 | | normsq 29009 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝑥) ∈ ℋ →
((normℎ‘(𝑇‘𝑥))↑2) = ((𝑇‘𝑥) ·ih (𝑇‘𝑥))) |
131 | 19, 130 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘(𝑇‘𝑥))↑2) = ((𝑇‘𝑥) ·ih (𝑇‘𝑥))) |
132 | | bdopadj 29957 |
. . . . . . . . . . . . . . . 16
⊢
((adjℎ‘𝑇) ∈ BndLinOp →
(adjℎ‘𝑇) ∈ dom
adjℎ) |
133 | 3, 132 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(adjℎ‘𝑇) ∈ dom
adjℎ |
134 | | adj2 29809 |
. . . . . . . . . . . . . . 15
⊢
(((adjℎ‘𝑇) ∈ dom adjℎ ∧
(𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) →
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥) = ((𝑇‘𝑥) ·ih
((adjℎ‘(adjℎ‘𝑇))‘𝑥))) |
135 | 133, 134 | mp3an1 1446 |
. . . . . . . . . . . . . 14
⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) →
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥) = ((𝑇‘𝑥) ·ih
((adjℎ‘(adjℎ‘𝑇))‘𝑥))) |
136 | 19, 135 | mpancom 688 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥) = ((𝑇‘𝑥) ·ih
((adjℎ‘(adjℎ‘𝑇))‘𝑥))) |
137 | | bdopadj 29957 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom
adjℎ) |
138 | | adjadj 29811 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∈ dom
adjℎ →
(adjℎ‘(adjℎ‘𝑇)) = 𝑇) |
139 | 1, 137, 138 | mp2b 10 |
. . . . . . . . . . . . . . 15
⊢
(adjℎ‘(adjℎ‘𝑇)) = 𝑇 |
140 | 139 | fveq1i 6660 |
. . . . . . . . . . . . . 14
⊢
((adjℎ‘(adjℎ‘𝑇))‘𝑥) = (𝑇‘𝑥) |
141 | 140 | oveq2i 7162 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝑥) ·ih
((adjℎ‘(adjℎ‘𝑇))‘𝑥)) = ((𝑇‘𝑥) ·ih (𝑇‘𝑥)) |
142 | 136, 141 | eqtr2di 2811 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) ·ih (𝑇‘𝑥)) = (((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) |
143 | 131, 142 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
((normℎ‘(𝑇‘𝑥))↑2) =
(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥)) |
144 | 143 | fveq2d 6663 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
(abs‘((normℎ‘(𝑇‘𝑥))↑2)) =
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥))) |
145 | 129, 144 | eqtr3d 2796 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ →
((normℎ‘(𝑇‘𝑥))↑2) =
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥))) |
146 | 145 | adantr 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘(𝑇‘𝑥))↑2) =
(abs‘(((adjℎ‘𝑇)‘(𝑇‘𝑥)) ·ih 𝑥))) |
147 | 75 | sqsqrti 14776 |
. . . . . . . . . 10
⊢ (0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) →
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2) =
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
148 | 8, 71, 147 | mp2b 10 |
. . . . . . . . 9
⊢
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2) =
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) |
149 | 148 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2) =
(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
150 | 125, 146,
149 | 3brtr4d 5065 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘(𝑇‘𝑥))↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2)) |
151 | | normge0 29001 |
. . . . . . . . . 10
⊢ ((𝑇‘𝑥) ∈ ℋ → 0 ≤
(normℎ‘(𝑇‘𝑥))) |
152 | 19, 151 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ → 0 ≤
(normℎ‘(𝑇‘𝑥))) |
153 | 8, 71, 76 | mp2b 10 |
. . . . . . . . . 10
⊢
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ |
154 | 75 | sqrtge0i 14777 |
. . . . . . . . . . 11
⊢ (0 ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) → 0 ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))) |
155 | 8, 71, 154 | mp2b 10 |
. . . . . . . . . 10
⊢ 0 ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
156 | | le2sq 13542 |
. . . . . . . . . 10
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑇‘𝑥))) ∧
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ∈ ℝ ∧ 0 ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))))) →
((normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔
((normℎ‘(𝑇‘𝑥))↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2))) |
157 | 153, 155,
156 | mpanr12 705 |
. . . . . . . . 9
⊢
(((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑇‘𝑥))) →
((normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔
((normℎ‘(𝑇‘𝑥))↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2))) |
158 | 27, 152, 157 | syl2anc 588 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
((normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔
((normℎ‘(𝑇‘𝑥))↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2))) |
159 | 158 | adantr 485 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔
((normℎ‘(𝑇‘𝑥))↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2))) |
160 | 150, 159 | mpbird 260 |
. . . . . 6
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))) |
161 | 160 | ex 417 |
. . . . 5
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))))) |
162 | 80, 161 | mprgbir 3086 |
. . . 4
⊢
(normop‘𝑇) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) |
163 | 10, 153 | le2sqi 13596 |
. . . . 5
⊢ ((0 ≤
(normop‘𝑇)
∧ 0 ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))) → ((normop‘𝑇) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔ ((normop‘𝑇)↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2))) |
164 | 46, 155, 163 | mp2an 692 |
. . . 4
⊢
((normop‘𝑇) ≤
(√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇))) ↔ ((normop‘𝑇)↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2)) |
165 | 162, 164 | mpbi 233 |
. . 3
⊢
((normop‘𝑇)↑2) ≤
((√‘(normop‘((adjℎ‘𝑇) ∘ 𝑇)))↑2) |
166 | 165, 148 | breqtri 5058 |
. 2
⊢
((normop‘𝑇)↑2) ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) |
167 | 75, 11 | letri3i 10787 |
. 2
⊢
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) = ((normop‘𝑇)↑2) ↔
((normop‘((adjℎ‘𝑇) ∘ 𝑇)) ≤ ((normop‘𝑇)↑2) ∧
((normop‘𝑇)↑2) ≤
(normop‘((adjℎ‘𝑇) ∘ 𝑇)))) |
168 | 70, 166, 167 | mpbir2an 711 |
1
⊢
(normop‘((adjℎ‘𝑇) ∘ 𝑇)) = ((normop‘𝑇)↑2) |