| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preleq | Structured version Visualization version GIF version | ||
| Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Revised by AV, 15-Jun-2022.) |
| Ref | Expression |
|---|---|
| preleq.b | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preleq | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.b | . 2 ⊢ 𝐵 ∈ V | |
| 2 | preleqg 9530 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | |
| 3 | 1, 2 | mp3anl2 1458 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-reg 9503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-eprel 5523 df-fr 5576 |
| This theorem is referenced by: opthreg 9533 dfac2b 10044 |
| Copyright terms: Public domain | W3C validator |