HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem5 Structured version   Visualization version   GIF version

Theorem mdsymlem5 32435
Description: Lemma for mdsymi 32439. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem5 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑝,𝑐,𝑞,𝑟,𝐴   𝐵,𝑐,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑝,𝑐)

Proof of Theorem mdsymlem5
StepHypRef Expression
1 df-ne 2938 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝑝 ↔ ¬ 𝑞 = 𝑝)
2 atnemeq0 32405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑞𝑝 ↔ (𝑞𝑝) = 0))
31, 2bitr3id 285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (¬ 𝑞 = 𝑝 ↔ (𝑞𝑝) = 0))
43anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
543adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
6 atelch 32372 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ HAtoms → 𝑞C )
7 atexch 32409 . . . . . . . . . . . . . . . . . . . 20 ((𝑞C𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
86, 7syl3an1 1162 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
95, 8sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) → 𝑟 ⊆ (𝑞 𝑝)))
109expd 415 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
11103com23 1125 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
12113expa 1117 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1312adantrl 716 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1413adantrd 491 . . . . . . . . . . . . 13 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1514imp32 418 . . . . . . . . . . . 12 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → 𝑟 ⊆ (𝑞 𝑝))
1615adantrl 716 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → 𝑟 ⊆ (𝑞 𝑝))
1716adantrr 717 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑞 𝑝))
18 simplrl 777 . . . . . . . . . . . 12 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑞𝐴)
19 atelch 32372 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
2019anim1i 615 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑐C ) → (𝑝C𝑐C ))
2120ancoms 458 . . . . . . . . . . . . . 14 ((𝑐C𝑝 ∈ HAtoms) → (𝑝C𝑐C ))
22 mdsymlem1.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴C
23 chub2 31536 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴C𝑐C ) → 𝐴 ⊆ (𝑐 𝐴))
2422, 23mpan 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝐴 ⊆ (𝑐 𝐴))
25 sstr 4003 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞𝐴𝐴 ⊆ (𝑐 𝐴)) → 𝑞 ⊆ (𝑐 𝐴))
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞𝐴𝑐C ) → 𝑞 ⊆ (𝑐 𝐴))
27 chub1 31535 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐴C ) → 𝑐 ⊆ (𝑐 𝐴))
2822, 27mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝑐 ⊆ (𝑐 𝐴))
29 sstr 4003 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝𝑐𝑐 ⊆ (𝑐 𝐴)) → 𝑝 ⊆ (𝑐 𝐴))
3028, 29sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐𝑐C ) → 𝑝 ⊆ (𝑐 𝐴))
3126, 30anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑞𝐴𝑐C ) ∧ (𝑝𝑐𝑐C )) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3231anandirs 679 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞𝐴𝑝𝑐) ∧ 𝑐C ) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3332ancoms 458 . . . . . . . . . . . . . . . . . . . 20 ((𝑐C ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3433adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
35 chjcl 31385 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐C𝐴C ) → (𝑐 𝐴) ∈ C )
3622, 35mpan2 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐C → (𝑐 𝐴) ∈ C )
37 chlub 31537 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑝C ∧ (𝑐 𝐴) ∈ C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
3836, 37syl3an3 1164 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞C𝑝C𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
39383expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝑞C𝑝C ) ∧ 𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4134, 40mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
4241adantrl 716 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
43 chlejb2 31541 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑐C ) → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4422, 43mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑐C → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4544biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑐C𝐴𝑐) → (𝑐 𝐴) = 𝑐)
4645ad2ant2lr 748 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑐 𝐴) = 𝑐)
4742, 46sseqtrd 4035 . . . . . . . . . . . . . . . 16 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ 𝑐)
4847exp45 438 . . . . . . . . . . . . . . 15 (((𝑞C𝑝C ) ∧ 𝑐C ) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
4948anasss 466 . . . . . . . . . . . . . 14 ((𝑞C ∧ (𝑝C𝑐C )) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
506, 21, 49syl2an 596 . . . . . . . . . . . . 13 ((𝑞 ∈ HAtoms ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5150adantlr 715 . . . . . . . . . . . 12 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5218, 51syl7 74 . . . . . . . . . . 11 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5352imp44 428 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑞 𝑝) ⊆ 𝑐)
5417, 53sstrd 4005 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝑐)
55 simplrr 778 . . . . . . . . . . 11 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑟𝐵)
5655ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐) → 𝑟𝐵)
5756adantl 481 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝐵)
5854, 57ssind 4248 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑐𝐵))
59 atelch 32372 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ HAtoms → 𝑟C )
606, 59anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞C𝑟C ))
61 mdsymlem1.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵C
62 chincl 31527 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐵C ) → (𝑐𝐵) ∈ C )
6361, 62mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C → (𝑐𝐵) ∈ C )
64 chlej1 31538 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) ∧ 𝑟 ⊆ (𝑐𝐵)) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞))
6564ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6663, 65syl3an2 1163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟C𝑐C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
67663comr 1124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑟C𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
68673expa 1117 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6968adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
70 chlej2 31539 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑞C𝐴C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7122, 70mp3anl2 1455 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑞C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7263, 71sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑞C𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7372adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
74 sstr2 4001 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7573, 74syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
76 chjcom 31534 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟C ) → (𝑞 𝑟) = (𝑟 𝑞))
7776ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑞 𝑟) = (𝑟 𝑞))
7877sseq1d 4026 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7975, 78sylibrd 259 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8069, 79syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8180adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
82 sstr2 4001 . . . . . . . . . . . . . . . . . . 19 (𝑝 ⊆ (𝑞 𝑟) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8382ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8481, 83syld 47 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8584exp32 420 . . . . . . . . . . . . . . . 16 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8660, 85sylan 580 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8786adantrr 717 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8887imp31 417 . . . . . . . . . . . . 13 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8988adantrr 717 . . . . . . . . . . . 12 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ (𝑞𝐴𝑟𝐵)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9089anasss 466 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9190adantrr 717 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9291adantrl 716 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9392adantrr 717 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9458, 93mpd 15 . . . . . . 7 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))
9594exp32 420 . . . . . 6 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
9695exp4d 433 . . . . 5 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
9796exp32 420 . . . 4 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝑝 ∈ HAtoms → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9897com34 91 . . 3 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝐴𝑐 → (𝑝 ∈ HAtoms → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9998imp4c 423 . 2 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
10099com24 95 1 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cin 3961  wss 3962  (class class class)co 7430   C cch 30957   chj 30961  0c0h 30963  HAtomscat 30993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-span 31337  df-chj 31338  df-chsup 31339  df-pjh 31423  df-cv 32307  df-at 32366
This theorem is referenced by:  mdsymlem6  32436
  Copyright terms: Public domain W3C validator