Proof of Theorem mdsymlem5
Step | Hyp | Ref
| Expression |
1 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 ≠ 𝑝 ↔ ¬ 𝑞 = 𝑝) |
2 | | atnemeq0 30458 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑞 ≠ 𝑝 ↔ (𝑞 ∩ 𝑝) = 0ℋ)) |
3 | 1, 2 | bitr3id 288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (¬
𝑞 = 𝑝 ↔ (𝑞 ∩ 𝑝) = 0ℋ)) |
4 | 3 | anbi2d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ∩ 𝑝) = 0ℋ))) |
5 | 4 | 3adant3 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ∩ 𝑝) = 0ℋ))) |
6 | | atelch 30425 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∈ HAtoms → 𝑞 ∈
Cℋ ) |
7 | | atexch 30462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑞 ∈
Cℋ ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ∩ 𝑝) = 0ℋ) → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝))) |
8 | 6, 7 | syl3an1 1165 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ∩ 𝑝) = 0ℋ) → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝))) |
9 | 5, 8 | sylbid 243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ ¬ 𝑞 = 𝑝) → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝))) |
10 | 9 | expd 419 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (¬ 𝑞 = 𝑝 → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)))) |
11 | 10 | 3com23 1128 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (¬ 𝑞 = 𝑝 → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)))) |
12 | 11 | 3expa 1120 |
. . . . . . . . . . . . . . 15
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (¬ 𝑞 = 𝑝 → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)))) |
13 | 12 | adantrl 716 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (¬ 𝑞 = 𝑝 → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)))) |
14 | 13 | adantrd 495 |
. . . . . . . . . . . . 13
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (¬ 𝑞 = 𝑝 → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)))) |
15 | 14 | imp32 422 |
. . . . . . . . . . . 12
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)) |
16 | 15 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ (𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝))) → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)) |
17 | 16 | adantrr 717 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)) |
18 | | simplrl 777 |
. . . . . . . . . . . 12
⊢ (((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑞 ⊆ 𝐴) |
19 | | atelch 30425 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ HAtoms → 𝑝 ∈
Cℋ ) |
20 | 19 | anim1i 618 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ HAtoms ∧ 𝑐 ∈
Cℋ ) → (𝑝 ∈ Cℋ
∧ 𝑐 ∈
Cℋ )) |
21 | 20 | ancoms 462 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms) → (𝑝 ∈ Cℋ
∧ 𝑐 ∈
Cℋ )) |
22 | | mdsymlem1.1 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐴 ∈
Cℋ |
23 | | chub2 29589 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈
Cℋ ∧ 𝑐 ∈ Cℋ )
→ 𝐴 ⊆ (𝑐 ∨ℋ 𝐴)) |
24 | 22, 23 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈
Cℋ → 𝐴 ⊆ (𝑐 ∨ℋ 𝐴)) |
25 | | sstr 3909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑞 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝑐 ∨ℋ 𝐴)) → 𝑞 ⊆ (𝑐 ∨ℋ 𝐴)) |
26 | 24, 25 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑞 ⊆ 𝐴 ∧ 𝑐 ∈ Cℋ )
→ 𝑞 ⊆ (𝑐 ∨ℋ 𝐴)) |
27 | | chub1 29588 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑐 ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ 𝑐 ⊆ (𝑐 ∨ℋ 𝐴)) |
28 | 22, 27 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈
Cℋ → 𝑐 ⊆ (𝑐 ∨ℋ 𝐴)) |
29 | | sstr 3909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ⊆ 𝑐 ∧ 𝑐 ⊆ (𝑐 ∨ℋ 𝐴)) → 𝑝 ⊆ (𝑐 ∨ℋ 𝐴)) |
30 | 28, 29 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ⊆ 𝑐 ∧ 𝑐 ∈ Cℋ )
→ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴)) |
31 | 26, 30 | anim12i 616 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑞 ⊆ 𝐴 ∧ 𝑐 ∈ Cℋ )
∧ (𝑝 ⊆ 𝑐 ∧ 𝑐 ∈ Cℋ ))
→ (𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴))) |
32 | 31 | anandirs 679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐) ∧ 𝑐 ∈ Cℋ )
→ (𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴))) |
33 | 32 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈
Cℋ ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐)) → (𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴))) |
34 | 33 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐)) → (𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴))) |
35 | | chjcl 29438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ (𝑐
∨ℋ 𝐴)
∈ Cℋ ) |
36 | 22, 35 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈
Cℋ → (𝑐 ∨ℋ 𝐴) ∈ Cℋ
) |
37 | | chlub 29590 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ
∧ (𝑐
∨ℋ 𝐴)
∈ Cℋ ) → ((𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴)) ↔ (𝑞 ∨ℋ 𝑝) ⊆ (𝑐 ∨ℋ 𝐴))) |
38 | 36, 37 | syl3an3 1167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ
∧ 𝑐 ∈
Cℋ ) → ((𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴)) ↔ (𝑞 ∨ℋ 𝑝) ⊆ (𝑐 ∨ℋ 𝐴))) |
39 | 38 | 3expa 1120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) → ((𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴)) ↔ (𝑞 ∨ℋ 𝑝) ⊆ (𝑐 ∨ℋ 𝐴))) |
40 | 39 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐)) → ((𝑞 ⊆ (𝑐 ∨ℋ 𝐴) ∧ 𝑝 ⊆ (𝑐 ∨ℋ 𝐴)) ↔ (𝑞 ∨ℋ 𝑝) ⊆ (𝑐 ∨ℋ 𝐴))) |
41 | 34, 40 | mpbid 235 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐)) → (𝑞 ∨ℋ 𝑝) ⊆ (𝑐 ∨ℋ 𝐴)) |
42 | 41 | adantrl 716 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝐴 ⊆ 𝑐 ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐))) → (𝑞 ∨ℋ 𝑝) ⊆ (𝑐 ∨ℋ 𝐴)) |
43 | | chlejb2 29594 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈
Cℋ ∧ 𝑐 ∈ Cℋ )
→ (𝐴 ⊆ 𝑐 ↔ (𝑐 ∨ℋ 𝐴) = 𝑐)) |
44 | 22, 43 | mpan 690 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈
Cℋ → (𝐴 ⊆ 𝑐 ↔ (𝑐 ∨ℋ 𝐴) = 𝑐)) |
45 | 44 | biimpa 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) → (𝑐 ∨ℋ 𝐴) = 𝑐) |
46 | 45 | ad2ant2lr 748 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝐴 ⊆ 𝑐 ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐))) → (𝑐 ∨ℋ 𝐴) = 𝑐) |
47 | 42, 46 | sseqtrd 3941 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝐴 ⊆ 𝑐 ∧ (𝑞 ⊆ 𝐴 ∧ 𝑝 ⊆ 𝑐))) → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐) |
48 | 47 | exp45 442 |
. . . . . . . . . . . . . . 15
⊢ (((𝑞 ∈
Cℋ ∧ 𝑝 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) → (𝐴 ⊆ 𝑐 → (𝑞 ⊆ 𝐴 → (𝑝 ⊆ 𝑐 → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐)))) |
49 | 48 | anasss 470 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈
Cℋ ∧ (𝑝 ∈ Cℋ
∧ 𝑐 ∈
Cℋ )) → (𝐴 ⊆ 𝑐 → (𝑞 ⊆ 𝐴 → (𝑝 ⊆ 𝑐 → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐)))) |
50 | 6, 21, 49 | syl2an 599 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ HAtoms ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → (𝐴 ⊆ 𝑐 → (𝑞 ⊆ 𝐴 → (𝑝 ⊆ 𝑐 → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐)))) |
51 | 50 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → (𝐴 ⊆ 𝑐 → (𝑞 ⊆ 𝐴 → (𝑝 ⊆ 𝑐 → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐)))) |
52 | 18, 51 | syl7 74 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → (𝐴 ⊆ 𝑐 → (((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝) → (𝑝 ⊆ 𝑐 → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐)))) |
53 | 52 | imp44 432 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → (𝑞 ∨ℋ 𝑝) ⊆ 𝑐) |
54 | 17, 53 | sstrd 3911 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → 𝑟 ⊆ 𝑐) |
55 | | simplrr 778 |
. . . . . . . . . . 11
⊢ (((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑟 ⊆ 𝐵) |
56 | 55 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐) → 𝑟 ⊆ 𝐵) |
57 | 56 | adantl 485 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → 𝑟 ⊆ 𝐵) |
58 | 54, 57 | ssind 4147 |
. . . . . . . 8
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → 𝑟 ⊆ (𝑐 ∩ 𝐵)) |
59 | | atelch 30425 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ HAtoms → 𝑟 ∈
Cℋ ) |
60 | 6, 59 | anim12i 616 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ
)) |
61 | | mdsymlem1.2 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐵 ∈
Cℋ |
62 | | chincl 29580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑐 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝑐 ∩ 𝐵) ∈
Cℋ ) |
63 | 61, 62 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈
Cℋ → (𝑐 ∩ 𝐵) ∈ Cℋ
) |
64 | | chlej1 29591 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑟 ∈
Cℋ ∧ (𝑐 ∩ 𝐵) ∈ Cℋ
∧ 𝑞 ∈
Cℋ ) ∧ 𝑟 ⊆ (𝑐 ∩ 𝐵)) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞)) |
65 | 64 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑟 ∈
Cℋ ∧ (𝑐 ∩ 𝐵) ∈ Cℋ
∧ 𝑞 ∈
Cℋ ) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞))) |
66 | 63, 65 | syl3an2 1166 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑟 ∈
Cℋ ∧ 𝑐 ∈ Cℋ
∧ 𝑞 ∈
Cℋ ) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞))) |
67 | 66 | 3comr 1127 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ
∧ 𝑐 ∈
Cℋ ) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞))) |
68 | 67 | 3expa 1120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞))) |
69 | 68 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞))) |
70 | | chlej2 29592 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑞 ∈
Cℋ ∧ 𝐴 ∈ Cℋ
∧ (𝑐 ∩ 𝐵) ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
71 | 22, 70 | mp3anl2 1458 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑞 ∈
Cℋ ∧ (𝑐 ∩ 𝐵) ∈ Cℋ )
∧ 𝑞 ⊆ 𝐴) → ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
72 | 63, 71 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑞 ∈
Cℋ ∧ 𝑐 ∈ Cℋ )
∧ 𝑞 ⊆ 𝐴) → ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
73 | 72 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
74 | | sstr2 3908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) → (((𝑐 ∩ 𝐵) ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
75 | 73, 74 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → ((𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) → (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
76 | | chjcom 29587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
→ (𝑞
∨ℋ 𝑟) =
(𝑟 ∨ℋ
𝑞)) |
77 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → (𝑞 ∨ℋ 𝑟) = (𝑟 ∨ℋ 𝑞)) |
78 | 77 | sseq1d 3932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → ((𝑞 ∨ℋ 𝑟) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ↔ (𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
79 | 75, 78 | sylibrd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → ((𝑟 ∨ℋ 𝑞) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝑞) → (𝑞 ∨ℋ 𝑟) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
80 | 69, 79 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ 𝑞 ⊆ 𝐴) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑞 ∨ℋ 𝑟) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
81 | 80 | adantrl 716 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ 𝑞 ⊆ 𝐴)) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → (𝑞 ∨ℋ 𝑟) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
82 | | sstr2 3908 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → ((𝑞 ∨ℋ 𝑟) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
83 | 82 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ 𝑞 ⊆ 𝐴)) → ((𝑞 ∨ℋ 𝑟) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
84 | 81, 83 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) ∧ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ 𝑞 ⊆ 𝐴)) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
85 | 84 | exp32 424 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑞 ∈
Cℋ ∧ 𝑟 ∈ Cℋ )
∧ 𝑐 ∈
Cℋ ) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (𝑞 ⊆ 𝐴 → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
86 | 60, 85 | sylan 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑐 ∈
Cℋ ) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (𝑞 ⊆ 𝐴 → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
87 | 86 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) → (𝑞 ⊆ 𝐴 → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
88 | 87 | imp31 421 |
. . . . . . . . . . . . 13
⊢
(((((𝑞 ∈ HAtoms
∧ 𝑟 ∈ HAtoms)
∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 ∨ℋ 𝑟)) ∧ 𝑞 ⊆ 𝐴) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
89 | 88 | adantrr 717 |
. . . . . . . . . . . 12
⊢
(((((𝑞 ∈ HAtoms
∧ 𝑟 ∈ HAtoms)
∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 ∨ℋ 𝑟)) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
90 | 89 | anasss 470 |
. . . . . . . . . . 11
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
91 | 90 | adantrr 717 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
92 | 91 | adantrl 716 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ (𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝))) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
93 | 92 | adantrr 717 |
. . . . . . . 8
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → (𝑟 ⊆ (𝑐 ∩ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
94 | 58, 93 | mpd 15 |
. . . . . . 7
⊢ ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) ∧ ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝 ⊆ 𝑐)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
95 | 94 | exp32 424 |
. . . . . 6
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → ((𝐴 ⊆ 𝑐 ∧ ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
96 | 95 | exp4d 437 |
. . . . 5
⊢ (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐 ∈
Cℋ ∧ 𝑝 ∈ HAtoms)) → (𝐴 ⊆ 𝑐 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) |
97 | 96 | exp32 424 |
. . . 4
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐 ∈
Cℋ → (𝑝 ∈ HAtoms → (𝐴 ⊆ 𝑐 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))))) |
98 | 97 | com34 91 |
. . 3
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐 ∈
Cℋ → (𝐴 ⊆ 𝑐 → (𝑝 ∈ HAtoms → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))))) |
99 | 98 | imp4c 427 |
. 2
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) |
100 | 99 | com24 95 |
1
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬
𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) |