HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem5 Structured version   Visualization version   GIF version

Theorem mdsymlem5 32426
Description: Lemma for mdsymi 32430. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem5 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑝,𝑐,𝑞,𝑟,𝐴   𝐵,𝑐,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑝,𝑐)

Proof of Theorem mdsymlem5
StepHypRef Expression
1 df-ne 2941 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝑝 ↔ ¬ 𝑞 = 𝑝)
2 atnemeq0 32396 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑞𝑝 ↔ (𝑞𝑝) = 0))
31, 2bitr3id 285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (¬ 𝑞 = 𝑝 ↔ (𝑞𝑝) = 0))
43anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
543adant3 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
6 atelch 32363 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ HAtoms → 𝑞C )
7 atexch 32400 . . . . . . . . . . . . . . . . . . . 20 ((𝑞C𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
86, 7syl3an1 1164 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
95, 8sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) → 𝑟 ⊆ (𝑞 𝑝)))
109expd 415 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
11103com23 1127 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
12113expa 1119 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1312adantrl 716 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1413adantrd 491 . . . . . . . . . . . . 13 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1514imp32 418 . . . . . . . . . . . 12 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → 𝑟 ⊆ (𝑞 𝑝))
1615adantrl 716 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → 𝑟 ⊆ (𝑞 𝑝))
1716adantrr 717 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑞 𝑝))
18 simplrl 777 . . . . . . . . . . . 12 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑞𝐴)
19 atelch 32363 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
2019anim1i 615 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑐C ) → (𝑝C𝑐C ))
2120ancoms 458 . . . . . . . . . . . . . 14 ((𝑐C𝑝 ∈ HAtoms) → (𝑝C𝑐C ))
22 mdsymlem1.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴C
23 chub2 31527 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴C𝑐C ) → 𝐴 ⊆ (𝑐 𝐴))
2422, 23mpan 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝐴 ⊆ (𝑐 𝐴))
25 sstr 3992 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞𝐴𝐴 ⊆ (𝑐 𝐴)) → 𝑞 ⊆ (𝑐 𝐴))
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞𝐴𝑐C ) → 𝑞 ⊆ (𝑐 𝐴))
27 chub1 31526 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐴C ) → 𝑐 ⊆ (𝑐 𝐴))
2822, 27mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝑐 ⊆ (𝑐 𝐴))
29 sstr 3992 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝𝑐𝑐 ⊆ (𝑐 𝐴)) → 𝑝 ⊆ (𝑐 𝐴))
3028, 29sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐𝑐C ) → 𝑝 ⊆ (𝑐 𝐴))
3126, 30anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑞𝐴𝑐C ) ∧ (𝑝𝑐𝑐C )) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3231anandirs 679 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞𝐴𝑝𝑐) ∧ 𝑐C ) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3332ancoms 458 . . . . . . . . . . . . . . . . . . . 20 ((𝑐C ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3433adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
35 chjcl 31376 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐C𝐴C ) → (𝑐 𝐴) ∈ C )
3622, 35mpan2 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐C → (𝑐 𝐴) ∈ C )
37 chlub 31528 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑝C ∧ (𝑐 𝐴) ∈ C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
3836, 37syl3an3 1166 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞C𝑝C𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
39383expa 1119 . . . . . . . . . . . . . . . . . . . 20 (((𝑞C𝑝C ) ∧ 𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4134, 40mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
4241adantrl 716 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
43 chlejb2 31532 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑐C ) → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4422, 43mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑐C → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4544biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑐C𝐴𝑐) → (𝑐 𝐴) = 𝑐)
4645ad2ant2lr 748 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑐 𝐴) = 𝑐)
4742, 46sseqtrd 4020 . . . . . . . . . . . . . . . 16 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ 𝑐)
4847exp45 438 . . . . . . . . . . . . . . 15 (((𝑞C𝑝C ) ∧ 𝑐C ) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
4948anasss 466 . . . . . . . . . . . . . 14 ((𝑞C ∧ (𝑝C𝑐C )) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
506, 21, 49syl2an 596 . . . . . . . . . . . . 13 ((𝑞 ∈ HAtoms ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5150adantlr 715 . . . . . . . . . . . 12 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5218, 51syl7 74 . . . . . . . . . . 11 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5352imp44 428 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑞 𝑝) ⊆ 𝑐)
5417, 53sstrd 3994 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝑐)
55 simplrr 778 . . . . . . . . . . 11 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑟𝐵)
5655ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐) → 𝑟𝐵)
5756adantl 481 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝐵)
5854, 57ssind 4241 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑐𝐵))
59 atelch 32363 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ HAtoms → 𝑟C )
606, 59anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞C𝑟C ))
61 mdsymlem1.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵C
62 chincl 31518 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐵C ) → (𝑐𝐵) ∈ C )
6361, 62mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C → (𝑐𝐵) ∈ C )
64 chlej1 31529 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) ∧ 𝑟 ⊆ (𝑐𝐵)) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞))
6564ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6663, 65syl3an2 1165 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟C𝑐C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
67663comr 1126 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑟C𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
68673expa 1119 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6968adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
70 chlej2 31530 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑞C𝐴C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7122, 70mp3anl2 1458 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑞C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7263, 71sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑞C𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7372adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
74 sstr2 3990 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7573, 74syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
76 chjcom 31525 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟C ) → (𝑞 𝑟) = (𝑟 𝑞))
7776ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑞 𝑟) = (𝑟 𝑞))
7877sseq1d 4015 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7975, 78sylibrd 259 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8069, 79syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8180adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
82 sstr2 3990 . . . . . . . . . . . . . . . . . . 19 (𝑝 ⊆ (𝑞 𝑟) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8382ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8481, 83syld 47 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8584exp32 420 . . . . . . . . . . . . . . . 16 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8660, 85sylan 580 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8786adantrr 717 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8887imp31 417 . . . . . . . . . . . . 13 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8988adantrr 717 . . . . . . . . . . . 12 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ (𝑞𝐴𝑟𝐵)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9089anasss 466 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9190adantrr 717 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9291adantrl 716 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9392adantrr 717 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9458, 93mpd 15 . . . . . . 7 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))
9594exp32 420 . . . . . 6 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
9695exp4d 433 . . . . 5 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
9796exp32 420 . . . 4 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝑝 ∈ HAtoms → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9897com34 91 . . 3 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝐴𝑐 → (𝑝 ∈ HAtoms → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9998imp4c 423 . 2 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
10099com24 95 1 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cin 3950  wss 3951  (class class class)co 7431   C cch 30948   chj 30952  0c0h 30954  HAtomscat 30984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-shs 31327  df-span 31328  df-chj 31329  df-chsup 31330  df-pjh 31414  df-cv 32298  df-at 32357
This theorem is referenced by:  mdsymlem6  32427
  Copyright terms: Public domain W3C validator