HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem5 Structured version   Visualization version   GIF version

Theorem mdsymlem5 32336
Description: Lemma for mdsymi 32340. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem5 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑝,𝑐,𝑞,𝑟,𝐴   𝐵,𝑐,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑝,𝑐)

Proof of Theorem mdsymlem5
StepHypRef Expression
1 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝑝 ↔ ¬ 𝑞 = 𝑝)
2 atnemeq0 32306 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑞𝑝 ↔ (𝑞𝑝) = 0))
31, 2bitr3id 285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (¬ 𝑞 = 𝑝 ↔ (𝑞𝑝) = 0))
43anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
543adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
6 atelch 32273 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ HAtoms → 𝑞C )
7 atexch 32310 . . . . . . . . . . . . . . . . . . . 20 ((𝑞C𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
86, 7syl3an1 1163 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
95, 8sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) → 𝑟 ⊆ (𝑞 𝑝)))
109expd 415 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
11103com23 1126 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
12113expa 1118 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1312adantrl 716 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1413adantrd 491 . . . . . . . . . . . . 13 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1514imp32 418 . . . . . . . . . . . 12 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → 𝑟 ⊆ (𝑞 𝑝))
1615adantrl 716 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → 𝑟 ⊆ (𝑞 𝑝))
1716adantrr 717 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑞 𝑝))
18 simplrl 776 . . . . . . . . . . . 12 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑞𝐴)
19 atelch 32273 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
2019anim1i 615 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑐C ) → (𝑝C𝑐C ))
2120ancoms 458 . . . . . . . . . . . . . 14 ((𝑐C𝑝 ∈ HAtoms) → (𝑝C𝑐C ))
22 mdsymlem1.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴C
23 chub2 31437 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴C𝑐C ) → 𝐴 ⊆ (𝑐 𝐴))
2422, 23mpan 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝐴 ⊆ (𝑐 𝐴))
25 sstr 3955 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞𝐴𝐴 ⊆ (𝑐 𝐴)) → 𝑞 ⊆ (𝑐 𝐴))
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞𝐴𝑐C ) → 𝑞 ⊆ (𝑐 𝐴))
27 chub1 31436 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐴C ) → 𝑐 ⊆ (𝑐 𝐴))
2822, 27mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝑐 ⊆ (𝑐 𝐴))
29 sstr 3955 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝𝑐𝑐 ⊆ (𝑐 𝐴)) → 𝑝 ⊆ (𝑐 𝐴))
3028, 29sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐𝑐C ) → 𝑝 ⊆ (𝑐 𝐴))
3126, 30anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑞𝐴𝑐C ) ∧ (𝑝𝑐𝑐C )) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3231anandirs 679 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞𝐴𝑝𝑐) ∧ 𝑐C ) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3332ancoms 458 . . . . . . . . . . . . . . . . . . . 20 ((𝑐C ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3433adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
35 chjcl 31286 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐C𝐴C ) → (𝑐 𝐴) ∈ C )
3622, 35mpan2 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐C → (𝑐 𝐴) ∈ C )
37 chlub 31438 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑝C ∧ (𝑐 𝐴) ∈ C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
3836, 37syl3an3 1165 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞C𝑝C𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
39383expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝑞C𝑝C ) ∧ 𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4134, 40mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
4241adantrl 716 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
43 chlejb2 31442 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑐C ) → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4422, 43mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑐C → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4544biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑐C𝐴𝑐) → (𝑐 𝐴) = 𝑐)
4645ad2ant2lr 748 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑐 𝐴) = 𝑐)
4742, 46sseqtrd 3983 . . . . . . . . . . . . . . . 16 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ 𝑐)
4847exp45 438 . . . . . . . . . . . . . . 15 (((𝑞C𝑝C ) ∧ 𝑐C ) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
4948anasss 466 . . . . . . . . . . . . . 14 ((𝑞C ∧ (𝑝C𝑐C )) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
506, 21, 49syl2an 596 . . . . . . . . . . . . 13 ((𝑞 ∈ HAtoms ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5150adantlr 715 . . . . . . . . . . . 12 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5218, 51syl7 74 . . . . . . . . . . 11 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5352imp44 428 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑞 𝑝) ⊆ 𝑐)
5417, 53sstrd 3957 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝑐)
55 simplrr 777 . . . . . . . . . . 11 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑟𝐵)
5655ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐) → 𝑟𝐵)
5756adantl 481 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝐵)
5854, 57ssind 4204 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑐𝐵))
59 atelch 32273 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ HAtoms → 𝑟C )
606, 59anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞C𝑟C ))
61 mdsymlem1.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵C
62 chincl 31428 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐵C ) → (𝑐𝐵) ∈ C )
6361, 62mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C → (𝑐𝐵) ∈ C )
64 chlej1 31439 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) ∧ 𝑟 ⊆ (𝑐𝐵)) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞))
6564ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6663, 65syl3an2 1164 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟C𝑐C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
67663comr 1125 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑟C𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
68673expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6968adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
70 chlej2 31440 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑞C𝐴C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7122, 70mp3anl2 1458 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑞C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7263, 71sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑞C𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7372adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
74 sstr2 3953 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7573, 74syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
76 chjcom 31435 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟C ) → (𝑞 𝑟) = (𝑟 𝑞))
7776ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑞 𝑟) = (𝑟 𝑞))
7877sseq1d 3978 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7975, 78sylibrd 259 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8069, 79syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8180adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
82 sstr2 3953 . . . . . . . . . . . . . . . . . . 19 (𝑝 ⊆ (𝑞 𝑟) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8382ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8481, 83syld 47 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8584exp32 420 . . . . . . . . . . . . . . . 16 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8660, 85sylan 580 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8786adantrr 717 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8887imp31 417 . . . . . . . . . . . . 13 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8988adantrr 717 . . . . . . . . . . . 12 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ (𝑞𝐴𝑟𝐵)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9089anasss 466 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9190adantrr 717 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9291adantrl 716 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9392adantrr 717 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9458, 93mpd 15 . . . . . . 7 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))
9594exp32 420 . . . . . 6 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
9695exp4d 433 . . . . 5 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
9796exp32 420 . . . 4 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝑝 ∈ HAtoms → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9897com34 91 . . 3 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝐴𝑐 → (𝑝 ∈ HAtoms → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9998imp4c 423 . 2 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
10099com24 95 1 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3913  wss 3914  (class class class)co 7387   C cch 30858   chj 30862  0c0h 30864  HAtomscat 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-shs 31237  df-span 31238  df-chj 31239  df-chsup 31240  df-pjh 31324  df-cv 32208  df-at 32267
This theorem is referenced by:  mdsymlem6  32337
  Copyright terms: Public domain W3C validator