HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub2 Structured version   Visualization version   GIF version

Theorem nmfnleub2 31870
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub2 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmfnleub2
StepHypRef Expression
1 normcl 31069 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21ad2antlr 727 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
3 simpllr 775 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4 simpr 484 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
5 1re 11115 . . . . . . . . . . 11 1 ∈ ℝ
6 lemul2a 11979 . . . . . . . . . . 11 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
75, 6mp3anl2 1458 . . . . . . . . . 10 ((((norm𝑥) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
82, 3, 4, 7syl21anc 837 . . . . . . . . 9 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
9 ax-1rid 11079 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
109ad2antrl 728 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 1) = 𝐴)
1110ad2antrr 726 . . . . . . . . 9 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · 1) = 𝐴)
128, 11breqtrd 5118 . . . . . . . 8 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ 𝐴)
13 ffvelcdm 7015 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℂ)
1413abscld 15346 . . . . . . . . . . 11 ((𝑇: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇𝑥)) ∈ ℝ)
1514adantlr 715 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇𝑥)) ∈ ℝ)
16 remulcl 11094 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → (𝐴 · (norm𝑥)) ∈ ℝ)
171, 16sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1817adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1918adantll 714 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
20 simplrl 776 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℝ)
21 letr 11210 . . . . . . . . . 10 (((abs‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (norm𝑥)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2215, 19, 20, 21syl3anc 1373 . . . . . . . . 9 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2322adantr 480 . . . . . . . 8 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2412, 23mpan2d 694 . . . . . . 7 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2524ex 412 . . . . . 6 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2625com23 86 . . . . 5 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2726ralimdva 3141 . . . 4 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2827imp 406 . . 3 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
29 rexr 11161 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3029adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ*)
31 nmfnleub 31869 . . . . 5 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
3230, 31sylan2 593 . . . 4 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
3332biimpar 477 . . 3 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)) → (normfn𝑇) ≤ 𝐴)
3428, 33syldan 591 . 2 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
35343impa 1109 1 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  *cxr 11148  cle 11150  abscabs 15141  chba 30863  normcno 30867  normfncnmf 30895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hv0cl 30947  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hnorm 30912  df-nmfn 31789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator