HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub2 Structured version   Visualization version   GIF version

Theorem nmfnleub2 31853
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub2 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmfnleub2
StepHypRef Expression
1 normcl 31052 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21ad2antlr 725 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
3 simpllr 774 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4 simpr 483 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
5 1re 11252 . . . . . . . . . . 11 1 ∈ ℝ
6 lemul2a 12111 . . . . . . . . . . 11 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
75, 6mp3anl2 1453 . . . . . . . . . 10 ((((norm𝑥) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
82, 3, 4, 7syl21anc 836 . . . . . . . . 9 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
9 ax-1rid 11216 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
109ad2antrl 726 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 1) = 𝐴)
1110ad2antrr 724 . . . . . . . . 9 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · 1) = 𝐴)
128, 11breqtrd 5169 . . . . . . . 8 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ 𝐴)
13 ffvelcdm 7084 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℂ)
1413abscld 15433 . . . . . . . . . . 11 ((𝑇: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇𝑥)) ∈ ℝ)
1514adantlr 713 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇𝑥)) ∈ ℝ)
16 remulcl 11231 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → (𝐴 · (norm𝑥)) ∈ ℝ)
171, 16sylan2 591 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1817adantlr 713 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1918adantll 712 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
20 simplrl 775 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℝ)
21 letr 11346 . . . . . . . . . 10 (((abs‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (norm𝑥)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2215, 19, 20, 21syl3anc 1368 . . . . . . . . 9 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2322adantr 479 . . . . . . . 8 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2412, 23mpan2d 692 . . . . . . 7 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2524ex 411 . . . . . 6 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2625com23 86 . . . . 5 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2726ralimdva 3157 . . . 4 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2827imp 405 . . 3 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
29 rexr 11298 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3029adantr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ*)
31 nmfnleub 31852 . . . . 5 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
3230, 31sylan2 591 . . . 4 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
3332biimpar 476 . . 3 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)) → (normfn𝑇) ≤ 𝐴)
3428, 33syldan 589 . 2 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
35343impa 1107 1 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5143  wf 6539  cfv 6543  (class class class)co 7413  cc 11144  cr 11145  0cc0 11146  1c1 11147   · cmul 11151  *cxr 11285  cle 11287  abscabs 15231  chba 30846  normcno 30850  normfncnmf 30878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-hilex 30926  ax-hv0cl 30930  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his3 31011  ax-his4 31012
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9475  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-rp 13020  df-seq 14013  df-exp 14073  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-hnorm 30895  df-nmfn 31772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator