Proof of Theorem nmfnleub2
Step | Hyp | Ref
| Expression |
1 | | normcl 29487 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℝ) |
2 | 1 | ad2antlr 724 |
. . . . . . . . . 10
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘𝑥) ∈ ℝ) |
3 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
4 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘𝑥) ≤ 1) |
5 | | 1re 10975 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
6 | | lemul2a 11830 |
. . . . . . . . . . 11
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧
(normℎ‘𝑥) ≤ 1) → (𝐴 ·
(normℎ‘𝑥)) ≤ (𝐴 · 1)) |
7 | 5, 6 | mp3anl2 1455 |
. . . . . . . . . 10
⊢
((((normℎ‘𝑥) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧
(normℎ‘𝑥) ≤ 1) → (𝐴 ·
(normℎ‘𝑥)) ≤ (𝐴 · 1)) |
8 | 2, 3, 4, 7 | syl21anc 835 |
. . . . . . . . 9
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → (𝐴 ·
(normℎ‘𝑥)) ≤ (𝐴 · 1)) |
9 | | ax-1rid 10941 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
10 | 9 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) → (𝐴 · 1) = 𝐴) |
11 | 10 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → (𝐴 · 1) = 𝐴) |
12 | 8, 11 | breqtrd 5100 |
. . . . . . . 8
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → (𝐴 ·
(normℎ‘𝑥)) ≤ 𝐴) |
13 | | ffvelrn 6959 |
. . . . . . . . . . . 12
⊢ ((𝑇: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) →
(𝑇‘𝑥) ∈ ℂ) |
14 | 13 | abscld 15148 |
. . . . . . . . . . 11
⊢ ((𝑇: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) →
(abs‘(𝑇‘𝑥)) ∈
ℝ) |
15 | 14 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) →
(abs‘(𝑇‘𝑥)) ∈
ℝ) |
16 | | remulcl 10956 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(normℎ‘𝑥) ∈ ℝ) → (𝐴 ·
(normℎ‘𝑥)) ∈ ℝ) |
17 | 1, 16 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ) → (𝐴 ·
(normℎ‘𝑥)) ∈ ℝ) |
18 | 17 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝑥 ∈ ℋ) → (𝐴 ·
(normℎ‘𝑥)) ∈ ℝ) |
19 | 18 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (𝐴 ·
(normℎ‘𝑥)) ∈ ℝ) |
20 | | simplrl 774 |
. . . . . . . . . 10
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈
ℝ) |
21 | | letr 11069 |
. . . . . . . . . 10
⊢
(((abs‘(𝑇‘𝑥)) ∈ ℝ ∧ (𝐴 ·
(normℎ‘𝑥)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) ∧ (𝐴 ·
(normℎ‘𝑥)) ≤ 𝐴) → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
22 | 15, 19, 20, 21 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) →
(((abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) ∧ (𝐴 ·
(normℎ‘𝑥)) ≤ 𝐴) → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
23 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → (((abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) ∧ (𝐴 ·
(normℎ‘𝑥)) ≤ 𝐴) → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
24 | 12, 23 | mpan2d 691 |
. . . . . . 7
⊢ ((((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → ((abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
25 | 24 | ex 413 |
. . . . . 6
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) →
((normℎ‘𝑥) ≤ 1 → ((abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
26 | 25 | com23 86 |
. . . . 5
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧ 𝑥 ∈ ℋ) →
((abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) →
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
27 | 26 | ralimdva 3108 |
. . . 4
⊢ ((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) →
(∀𝑥 ∈ ℋ
(abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥)) → ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
28 | 27 | imp 407 |
. . 3
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧
∀𝑥 ∈ ℋ
(abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥))) → ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
29 | | rexr 11021 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
30 | 29 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → 𝐴 ∈
ℝ*) |
31 | | nmfnleub 30287 |
. . . . 5
⊢ ((𝑇: ℋ⟶ℂ ∧
𝐴 ∈
ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
32 | 30, 31 | sylan2 593 |
. . . 4
⊢ ((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) →
((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
33 | 32 | biimpar 478 |
. . 3
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧
∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) → (normfn‘𝑇) ≤ 𝐴) |
34 | 28, 33 | syldan 591 |
. 2
⊢ (((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) ∧
∀𝑥 ∈ ℋ
(abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥))) → (normfn‘𝑇) ≤ 𝐴) |
35 | 34 | 3impa 1109 |
1
⊢ ((𝑇: ℋ⟶ℂ ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴) ∧ ∀𝑥 ∈ ℋ
(abs‘(𝑇‘𝑥)) ≤ (𝐴 ·
(normℎ‘𝑥))) → (normfn‘𝑇) ≤ 𝐴) |