![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bcs2 | Structured version Visualization version GIF version |
Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 31105. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bcs2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl 31005 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
2 | 1 | abscld 15436 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ) |
3 | 2 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ) |
4 | normcl 31050 | . . . 4 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
5 | normcl 31050 | . . . 4 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℝ) | |
6 | remulcl 11239 | . . . 4 ⊢ (((normℎ‘𝐴) ∈ ℝ ∧ (normℎ‘𝐵) ∈ ℝ) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ∈ ℝ) | |
7 | 4, 5, 6 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ∈ ℝ) |
8 | 7 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ∈ ℝ) |
9 | 5 | 3ad2ant2 1131 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘𝐵) ∈ ℝ) |
10 | bcs 31106 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) | |
11 | 10 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) |
12 | 4 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘𝐴) ∈ ℝ) |
13 | normge0 31051 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → 0 ≤ (normℎ‘𝐵)) | |
14 | 13 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → 0 ≤ (normℎ‘𝐵)) |
15 | 9, 14 | jca 510 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐵) ∈ ℝ ∧ 0 ≤ (normℎ‘𝐵))) |
16 | simp3 1135 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘𝐴) ≤ 1) | |
17 | 1re 11260 | . . . . 5 ⊢ 1 ∈ ℝ | |
18 | lemul1a 12115 | . . . . 5 ⊢ ((((normℎ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normℎ‘𝐵) ∈ ℝ ∧ 0 ≤ (normℎ‘𝐵))) ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (1 · (normℎ‘𝐵))) | |
19 | 17, 18 | mp3anl2 1452 | . . . 4 ⊢ ((((normℎ‘𝐴) ∈ ℝ ∧ ((normℎ‘𝐵) ∈ ℝ ∧ 0 ≤ (normℎ‘𝐵))) ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (1 · (normℎ‘𝐵))) |
20 | 12, 15, 16, 19 | syl21anc 836 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (1 · (normℎ‘𝐵))) |
21 | 5 | recnd 11288 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℂ) |
22 | 21 | mullidd 11278 | . . . 4 ⊢ (𝐵 ∈ ℋ → (1 · (normℎ‘𝐵)) = (normℎ‘𝐵)) |
23 | 22 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (1 · (normℎ‘𝐵)) = (normℎ‘𝐵)) |
24 | 20, 23 | breqtrd 5178 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (normℎ‘𝐵)) |
25 | 3, 8, 9, 11, 24 | letrd 11417 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 (class class class)co 7423 ℝcr 11153 0cc0 11154 1c1 11155 · cmul 11159 ≤ cle 11295 abscabs 15234 ℋchba 30844 ·ih csp 30847 normℎcno 30848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-inf2 9680 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 ax-addf 11233 ax-mulf 11234 ax-hilex 30924 ax-hfvadd 30925 ax-hvcom 30926 ax-hvass 30927 ax-hv0cl 30928 ax-hvaddid 30929 ax-hfvmul 30930 ax-hvmulid 30931 ax-hvmulass 30932 ax-hvdistr1 30933 ax-hvdistr2 30934 ax-hvmul0 30935 ax-hfi 31004 ax-his1 31007 ax-his2 31008 ax-his3 31009 ax-his4 31010 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-of 7689 df-om 7876 df-1st 8002 df-2nd 8003 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8856 df-ixp 8926 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-fsupp 9402 df-fi 9450 df-sup 9481 df-inf 9482 df-oi 9549 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-q 12980 df-rp 13024 df-xneg 13141 df-xadd 13142 df-xmul 13143 df-ioo 13377 df-icc 13380 df-fz 13534 df-fzo 13677 df-seq 14017 df-exp 14077 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 df-sum 15686 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-pt 17454 df-prds 17457 df-xrs 17512 df-qtop 17517 df-imas 17518 df-xps 17520 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19057 df-cntz 19306 df-cmn 19775 df-psmet 21327 df-xmet 21328 df-met 21329 df-bl 21330 df-mopn 21331 df-cnfld 21336 df-top 22879 df-topon 22896 df-topsp 22918 df-bases 22932 df-cld 23006 df-ntr 23007 df-cls 23008 df-cn 23214 df-cnp 23215 df-t1 23301 df-haus 23302 df-tx 23549 df-hmeo 23742 df-xms 24309 df-ms 24310 df-tms 24311 df-grpo 30418 df-gid 30419 df-ginv 30420 df-gdiv 30421 df-ablo 30470 df-vc 30484 df-nv 30517 df-va 30520 df-ba 30521 df-sm 30522 df-0v 30523 df-vs 30524 df-nmcv 30525 df-ims 30526 df-dip 30626 df-ph 30738 df-hnorm 30893 df-hba 30894 df-hvsub 30896 |
This theorem is referenced by: bcs3 31108 branmfn 32030 |
Copyright terms: Public domain | W3C validator |