| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1458 vtoclegft 3539 tz7.7 6332 ordin 6336 onfr 6345 fprresex 8240 tfrlem11 8307 phplem2 9114 epfrs 9621 zorng 10395 tsk2 10656 tskcard 10672 gruina 10709 muladd11 11283 00id 11288 ltaddneg 11329 negsub 11409 subneg 11410 muleqadd 11761 diveq0 11786 diveq1 11806 conjmul 11838 recp1lt1 12020 nnsub 12169 addltmul 12357 nnunb 12377 zltp1le 12522 gtndiv 12550 eluzp1m1 12758 zbtwnre 12844 rebtwnz 12845 xnn0le2is012 13145 supxrbnd 13227 divelunit 13394 fznatpl1 13478 flbi2 13721 fldiv 13764 modid 13800 modm1p1mod0 13829 fzen2 13876 nn0ennn 13886 seqshft2 13935 seqf1olem1 13948 ser1const 13965 sq01 14132 expnbnd 14139 faclbnd3 14199 faclbnd5 14205 hashunsng 14299 hashunsngx 14300 hashxplem 14340 ccatrid 14495 ccats1val1 14534 ccat2s1fst 14547 sgnn 15001 01sqrexlem2 15150 01sqrexlem7 15155 leabs 15206 abs2dif 15240 cvgrat 15790 cos2t 16087 sin01gt0 16099 cos01gt0 16100 demoivre 16109 demoivreALT 16110 rpnnen2lem5 16127 rpnnen2lem12 16134 omeo 16277 gcd0id 16430 sqgcd 16473 expgcd 16474 isprm3 16594 eulerthlem2 16693 pczpre 16759 pcrec 16770 ressress 17158 mulgm1 19007 unitgrpid 20303 mdet0pr 22507 m2detleib 22546 cmpcov2 23305 ufileu 23834 tgpconncompeqg 24027 itg2ge0 25663 mdegldg 25998 abssinper 26457 ppiub 27142 chtub 27150 bposlem2 27223 lgs1 27279 cofcutr 27868 addsbday 27960 negsbdaylem 27998 precsexlem10 28154 onscutlt 28201 n0sbday 28280 bdayn0p1 28294 eucliddivs 28301 nnzs 28310 zzs12 28385 remulscllem1 28402 colinearalglem4 28887 axsegconlem1 28895 axpaschlem 28918 axcontlem2 28943 axcontlem4 28945 axcontlem7 28948 axcontlem8 28949 funvtxval 28996 funiedgval 28997 vc0 30554 vcm 30556 nvmval2 30623 nvmf 30625 nvmdi 30628 nvnegneg 30629 nvpncan2 30633 nvaddsub4 30637 nvm1 30645 nvdif 30646 nvpi 30647 nvz0 30648 nvmtri 30651 nvabs 30652 nvge0 30653 imsmetlem 30670 4ipval2 30688 ipval3 30689 ipidsq 30690 dipcj 30694 sspmval 30713 ipasslem1 30811 ipasslem2 30812 dipsubdir 30828 hvsubdistr1 31029 shsubcl 31200 shsel3 31295 shunssi 31348 hosubdi 31788 lnopmi 31980 nmophmi 32011 nmopcoi 32075 opsqrlem6 32125 hstle 32210 hst0 32213 mdsl2i 32302 superpos 32334 dmdbr5ati 32402 f1rnen 32610 resvsca 33297 pthhashvtx 35172 cvmliftphtlem 35361 topdifinffinlem 37391 finixpnum 37644 tan2h 37651 poimirlem3 37662 poimirlem4 37663 poimirlem7 37666 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 poimirlem24 37683 poimirlem28 37687 mblfinlem2 37697 mblfinlem4 37699 ismblfin 37700 el3v2 38265 atlatle 39418 pmaple 39859 dihglblem2N 41392 sn-ltaddneg 42546 elnnrabdioph 42899 rabren3dioph 42907 zindbi 43038 expgrowth 44427 binomcxplemnotnn0 44448 trelpss 44546 etransc 46380 mogoldbb 47884 pgrple2abl 48464 aacllem 49901 |
| Copyright terms: Public domain | W3C validator |