| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1458 vtoclegft 3543 tz7.7 6333 ordin 6337 onfr 6346 fprresex 8243 tfrlem11 8310 phplem2 9119 epfrs 9627 zorng 10398 tsk2 10659 tskcard 10675 gruina 10712 muladd11 11286 00id 11291 ltaddneg 11332 negsub 11412 subneg 11413 muleqadd 11764 diveq0 11789 diveq1 11809 conjmul 11841 recp1lt1 12023 nnsub 12172 addltmul 12360 nnunb 12380 zltp1le 12525 gtndiv 12553 eluzp1m1 12761 zbtwnre 12847 rebtwnz 12848 xnn0le2is012 13148 supxrbnd 13230 divelunit 13397 fznatpl1 13481 flbi2 13721 fldiv 13764 modid 13800 modm1p1mod0 13829 fzen2 13876 nn0ennn 13886 seqshft2 13935 seqf1olem1 13948 ser1const 13965 sq01 14132 expnbnd 14139 faclbnd3 14199 faclbnd5 14205 hashunsng 14299 hashunsngx 14300 hashxplem 14340 ccatrid 14494 ccats1val1 14533 ccat2s1fst 14546 sgnn 15001 01sqrexlem2 15150 01sqrexlem7 15155 leabs 15206 abs2dif 15240 cvgrat 15790 cos2t 16087 sin01gt0 16099 cos01gt0 16100 demoivre 16109 demoivreALT 16110 rpnnen2lem5 16127 rpnnen2lem12 16134 omeo 16277 gcd0id 16430 sqgcd 16473 expgcd 16474 isprm3 16594 eulerthlem2 16693 pczpre 16759 pcrec 16770 ressress 17158 mulgm1 18973 unitgrpid 20270 mdet0pr 22477 m2detleib 22516 cmpcov2 23275 ufileu 23804 tgpconncompeqg 23997 itg2ge0 25634 mdegldg 25969 abssinper 26428 ppiub 27113 chtub 27121 bposlem2 27194 lgs1 27250 cofcutr 27839 addsbday 27931 negsbdaylem 27969 precsexlem10 28125 onscutlt 28172 n0sbday 28251 bdayn0p1 28265 eucliddivs 28272 nnzs 28281 zzs12 28356 remulscllem1 28373 colinearalglem4 28858 axsegconlem1 28866 axpaschlem 28889 axcontlem2 28914 axcontlem4 28916 axcontlem7 28919 axcontlem8 28920 funvtxval 28967 funiedgval 28968 vc0 30522 vcm 30524 nvmval2 30591 nvmf 30593 nvmdi 30596 nvnegneg 30597 nvpncan2 30601 nvaddsub4 30605 nvm1 30613 nvdif 30614 nvpi 30615 nvz0 30616 nvmtri 30619 nvabs 30620 nvge0 30621 imsmetlem 30638 4ipval2 30656 ipval3 30657 ipidsq 30658 dipcj 30662 sspmval 30681 ipasslem1 30779 ipasslem2 30780 dipsubdir 30796 hvsubdistr1 30997 shsubcl 31168 shsel3 31263 shunssi 31316 hosubdi 31756 lnopmi 31948 nmophmi 31979 nmopcoi 32043 opsqrlem6 32093 hstle 32178 hst0 32181 mdsl2i 32270 superpos 32302 dmdbr5ati 32370 f1rnen 32579 resvsca 33279 pthhashvtx 35121 cvmliftphtlem 35310 topdifinffinlem 37341 finixpnum 37605 tan2h 37612 poimirlem3 37623 poimirlem4 37624 poimirlem7 37627 poimirlem16 37636 poimirlem17 37637 poimirlem19 37639 poimirlem20 37640 poimirlem24 37644 poimirlem28 37648 mblfinlem2 37658 mblfinlem4 37660 ismblfin 37661 el3v2 38219 atlatle 39319 pmaple 39760 dihglblem2N 41293 sn-ltaddneg 42447 elnnrabdioph 42800 rabren3dioph 42808 zindbi 42939 expgrowth 44328 binomcxplemnotnn0 44349 trelpss 44448 etransc 46284 mogoldbb 47789 pgrple2abl 48369 aacllem 49806 |
| Copyright terms: Public domain | W3C validator |