| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1458 vtoclegft 3551 tz7.7 6346 ordin 6350 onfr 6359 fprresex 8266 tfrlem11 8333 phplem2 9146 epfrs 9662 zorng 10435 tsk2 10696 tskcard 10712 gruina 10749 muladd11 11322 00id 11327 ltaddneg 11368 negsub 11448 subneg 11449 muleqadd 11800 diveq0 11825 diveq1 11845 conjmul 11877 recp1lt1 12059 nnsub 12208 addltmul 12396 nnunb 12416 zltp1le 12561 gtndiv 12589 eluzp1m1 12797 zbtwnre 12883 rebtwnz 12884 xnn0le2is012 13184 supxrbnd 13266 divelunit 13433 fznatpl1 13517 flbi2 13757 fldiv 13800 modid 13836 modm1p1mod0 13865 fzen2 13912 nn0ennn 13922 seqshft2 13971 seqf1olem1 13984 ser1const 14001 sq01 14168 expnbnd 14175 faclbnd3 14235 faclbnd5 14241 hashunsng 14335 hashunsngx 14336 hashxplem 14376 ccatrid 14530 ccats1val1 14569 ccat2s1fst 14582 sgnn 15037 01sqrexlem2 15186 01sqrexlem7 15191 leabs 15242 abs2dif 15276 cvgrat 15826 cos2t 16123 sin01gt0 16135 cos01gt0 16136 demoivre 16145 demoivreALT 16146 rpnnen2lem5 16163 rpnnen2lem12 16170 omeo 16313 gcd0id 16466 sqgcd 16509 expgcd 16510 isprm3 16630 eulerthlem2 16729 pczpre 16795 pcrec 16806 ressress 17194 mulgm1 19009 unitgrpid 20306 mdet0pr 22513 m2detleib 22552 cmpcov2 23311 ufileu 23840 tgpconncompeqg 24033 itg2ge0 25670 mdegldg 26005 abssinper 26464 ppiub 27149 chtub 27157 bposlem2 27230 lgs1 27286 cofcutr 27873 addsbday 27965 negsbdaylem 28003 precsexlem10 28159 onscutlt 28206 n0sbday 28285 bdayn0p1 28299 eucliddivs 28306 nnzs 28315 zzs12 28388 remulscllem1 28405 colinearalglem4 28890 axsegconlem1 28898 axpaschlem 28921 axcontlem2 28946 axcontlem4 28948 axcontlem7 28951 axcontlem8 28952 funvtxval 28999 funiedgval 29000 vc0 30554 vcm 30556 nvmval2 30623 nvmf 30625 nvmdi 30628 nvnegneg 30629 nvpncan2 30633 nvaddsub4 30637 nvm1 30645 nvdif 30646 nvpi 30647 nvz0 30648 nvmtri 30651 nvabs 30652 nvge0 30653 imsmetlem 30670 4ipval2 30688 ipval3 30689 ipidsq 30690 dipcj 30694 sspmval 30713 ipasslem1 30811 ipasslem2 30812 dipsubdir 30828 hvsubdistr1 31029 shsubcl 31200 shsel3 31295 shunssi 31348 hosubdi 31788 lnopmi 31980 nmophmi 32011 nmopcoi 32075 opsqrlem6 32125 hstle 32210 hst0 32213 mdsl2i 32302 superpos 32334 dmdbr5ati 32402 f1rnen 32604 resvsca 33298 pthhashvtx 35109 cvmliftphtlem 35298 topdifinffinlem 37329 finixpnum 37593 tan2h 37600 poimirlem3 37611 poimirlem4 37612 poimirlem7 37615 poimirlem16 37624 poimirlem17 37625 poimirlem19 37627 poimirlem20 37628 poimirlem24 37632 poimirlem28 37636 mblfinlem2 37646 mblfinlem4 37648 ismblfin 37649 el3v2 38207 atlatle 39307 pmaple 39749 dihglblem2N 41282 sn-ltaddneg 42436 elnnrabdioph 42789 rabren3dioph 42797 zindbi 42929 expgrowth 44318 binomcxplemnotnn0 44339 trelpss 44438 etransc 46275 mogoldbb 47780 pgrple2abl 48347 aacllem 49784 |
| Copyright terms: Public domain | W3C validator |