Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1117 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 698 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mp3anl2 1455 tz7.7 6314 ordin 6318 onfr 6327 fprresex 8174 wfrlem14OLD 8201 wfrlem17OLD 8204 tfrlem11 8267 phplem2 9051 epfrs 9566 zorng 10339 tsk2 10600 tskcard 10616 gruina 10653 muladd11 11224 00id 11229 ltaddneg 11269 negsub 11348 subneg 11349 muleqadd 11698 diveq1 11745 conjmul 11771 recp1lt1 11952 nnsub 12096 addltmul 12288 nnunb 12308 zltp1le 12449 gtndiv 12476 eluzp1m1 12687 zbtwnre 12765 rebtwnz 12766 xnn0le2is012 13059 supxrbnd 13141 divelunit 13305 fznatpl1 13389 flbi2 13616 fldiv 13659 modid 13695 modm1p1mod0 13721 fzen2 13768 nn0ennn 13778 seqshft2 13828 seqf1olem1 13841 ser1const 13858 sq01 14019 expnbnd 14026 faclbnd3 14085 faclbnd5 14091 hashunsng 14185 hashunsngx 14186 hashxplem 14226 ccatrid 14369 ccats1val1 14408 ccat2s1fst 14427 sgnn 14881 sqrlem2 15031 sqrlem7 15036 leabs 15087 abs2dif 15120 cvgrat 15671 cos2t 15963 sin01gt0 15975 cos01gt0 15976 demoivre 15985 demoivreALT 15986 rpnnen2lem5 16003 rpnnen2lem12 16010 omeo 16151 gcd0id 16302 sqgcd 16344 isprm3 16462 eulerthlem2 16557 pczpre 16622 pcrec 16633 ressress 17032 mulgm1 18797 unitgrpid 19983 mdet0pr 21821 m2detleib 21860 cmpcov2 22621 ufileu 23150 tgpconncompeqg 23343 itg2ge0 24980 mdegldg 25311 abssinper 25757 ppiub 26432 chtub 26440 bposlem2 26513 lgs1 26569 colinearalglem4 27410 axsegconlem1 27418 axpaschlem 27441 axcontlem2 27466 axcontlem4 27468 axcontlem7 27471 axcontlem8 27472 funvtxval 27521 funiedgval 27522 vc0 29068 vcm 29070 nvmval2 29137 nvmf 29139 nvmdi 29142 nvnegneg 29143 nvpncan2 29147 nvaddsub4 29151 nvm1 29159 nvdif 29160 nvpi 29161 nvz0 29162 nvmtri 29165 nvabs 29166 nvge0 29167 imsmetlem 29184 4ipval2 29202 ipval3 29203 ipidsq 29204 dipcj 29208 sspmval 29227 ipasslem1 29325 ipasslem2 29326 dipsubdir 29342 hvsubdistr1 29543 shsubcl 29714 shsel3 29809 shunssi 29862 hosubdi 30302 lnopmi 30494 nmophmi 30525 nmopcoi 30589 opsqrlem6 30639 hstle 30724 hst0 30727 mdsl2i 30816 superpos 30848 dmdbr5ati 30916 f1rnen 31095 resvsca 31663 pthhashvtx 33224 cvmliftphtlem 33414 cofcutr 34162 topdifinffinlem 35595 finixpnum 35839 tan2h 35846 poimirlem3 35857 poimirlem4 35858 poimirlem7 35861 poimirlem16 35870 poimirlem17 35871 poimirlem19 35873 poimirlem20 35874 poimirlem24 35878 poimirlem28 35882 mblfinlem2 35892 mblfinlem4 35894 ismblfin 35895 el3v2 36455 atlatle 37559 pmaple 38001 dihglblem2N 39534 expgcd 40555 elnnrabdioph 40850 rabren3dioph 40858 zindbi 40990 expgrowth 42192 binomcxplemnotnn0 42213 trelpss 42312 etransc 44079 mogoldbb 45507 pgrple2abl 45971 aacllem 46775 |
Copyright terms: Public domain | W3C validator |