| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1458 vtoclegft 3551 tz7.7 6347 ordin 6351 onfr 6360 fprresex 8267 tfrlem11 8334 phplem2 9147 epfrs 9663 zorng 10436 tsk2 10697 tskcard 10713 gruina 10750 muladd11 11323 00id 11328 ltaddneg 11369 negsub 11449 subneg 11450 muleqadd 11801 diveq0 11826 diveq1 11846 conjmul 11878 recp1lt1 12060 nnsub 12209 addltmul 12397 nnunb 12417 zltp1le 12562 gtndiv 12590 eluzp1m1 12798 zbtwnre 12884 rebtwnz 12885 xnn0le2is012 13185 supxrbnd 13267 divelunit 13434 fznatpl1 13518 flbi2 13758 fldiv 13801 modid 13837 modm1p1mod0 13866 fzen2 13913 nn0ennn 13923 seqshft2 13972 seqf1olem1 13985 ser1const 14002 sq01 14169 expnbnd 14176 faclbnd3 14236 faclbnd5 14242 hashunsng 14336 hashunsngx 14337 hashxplem 14377 ccatrid 14531 ccats1val1 14570 ccat2s1fst 14583 sgnn 15038 01sqrexlem2 15187 01sqrexlem7 15192 leabs 15243 abs2dif 15277 cvgrat 15827 cos2t 16124 sin01gt0 16136 cos01gt0 16137 demoivre 16146 demoivreALT 16147 rpnnen2lem5 16164 rpnnen2lem12 16171 omeo 16314 gcd0id 16467 sqgcd 16510 expgcd 16511 isprm3 16631 eulerthlem2 16730 pczpre 16796 pcrec 16807 ressress 17195 mulgm1 19010 unitgrpid 20307 mdet0pr 22514 m2detleib 22553 cmpcov2 23312 ufileu 23841 tgpconncompeqg 24034 itg2ge0 25671 mdegldg 26006 abssinper 26465 ppiub 27150 chtub 27158 bposlem2 27231 lgs1 27287 cofcutr 27874 addsbday 27966 negsbdaylem 28004 precsexlem10 28160 onscutlt 28207 n0sbday 28286 bdayn0p1 28300 eucliddivs 28307 nnzs 28316 zzs12 28389 remulscllem1 28406 colinearalglem4 28891 axsegconlem1 28899 axpaschlem 28922 axcontlem2 28947 axcontlem4 28949 axcontlem7 28952 axcontlem8 28953 funvtxval 29000 funiedgval 29001 vc0 30555 vcm 30557 nvmval2 30624 nvmf 30626 nvmdi 30629 nvnegneg 30630 nvpncan2 30634 nvaddsub4 30638 nvm1 30646 nvdif 30647 nvpi 30648 nvz0 30649 nvmtri 30652 nvabs 30653 nvge0 30654 imsmetlem 30671 4ipval2 30689 ipval3 30690 ipidsq 30691 dipcj 30695 sspmval 30714 ipasslem1 30812 ipasslem2 30813 dipsubdir 30829 hvsubdistr1 31030 shsubcl 31201 shsel3 31296 shunssi 31349 hosubdi 31789 lnopmi 31981 nmophmi 32012 nmopcoi 32076 opsqrlem6 32126 hstle 32211 hst0 32214 mdsl2i 32303 superpos 32335 dmdbr5ati 32403 f1rnen 32605 resvsca 33299 pthhashvtx 35110 cvmliftphtlem 35299 topdifinffinlem 37330 finixpnum 37594 tan2h 37601 poimirlem3 37612 poimirlem4 37613 poimirlem7 37616 poimirlem16 37625 poimirlem17 37626 poimirlem19 37628 poimirlem20 37629 poimirlem24 37633 poimirlem28 37637 mblfinlem2 37647 mblfinlem4 37649 ismblfin 37650 el3v2 38208 atlatle 39308 pmaple 39750 dihglblem2N 41283 sn-ltaddneg 42437 elnnrabdioph 42790 rabren3dioph 42798 zindbi 42930 expgrowth 44319 binomcxplemnotnn0 44340 trelpss 44439 etransc 46276 mogoldbb 47781 pgrple2abl 48348 aacllem 49785 |
| Copyright terms: Public domain | W3C validator |