![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1119 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 700 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: mp3anl2 1457 vtoclegft 3574 tz7.7 6391 ordin 6395 onfr 6404 fprresex 8295 wfrlem14OLD 8322 wfrlem17OLD 8325 tfrlem11 8388 phplem2 9208 epfrs 9726 zorng 10499 tsk2 10760 tskcard 10776 gruina 10813 muladd11 11384 00id 11389 ltaddneg 11429 negsub 11508 subneg 11509 muleqadd 11858 diveq1 11905 conjmul 11931 recp1lt1 12112 nnsub 12256 addltmul 12448 nnunb 12468 zltp1le 12612 gtndiv 12639 eluzp1m1 12848 zbtwnre 12930 rebtwnz 12931 xnn0le2is012 13225 supxrbnd 13307 divelunit 13471 fznatpl1 13555 flbi2 13782 fldiv 13825 modid 13861 modm1p1mod0 13887 fzen2 13934 nn0ennn 13944 seqshft2 13994 seqf1olem1 14007 ser1const 14024 sq01 14188 expnbnd 14195 faclbnd3 14252 faclbnd5 14258 hashunsng 14352 hashunsngx 14353 hashxplem 14393 ccatrid 14537 ccats1val1 14576 ccat2s1fst 14589 sgnn 15041 01sqrexlem2 15190 01sqrexlem7 15195 leabs 15246 abs2dif 15279 cvgrat 15829 cos2t 16121 sin01gt0 16133 cos01gt0 16134 demoivre 16143 demoivreALT 16144 rpnnen2lem5 16161 rpnnen2lem12 16168 omeo 16309 gcd0id 16460 sqgcd 16502 isprm3 16620 eulerthlem2 16715 pczpre 16780 pcrec 16791 ressress 17193 mulgm1 18974 unitgrpid 20199 mdet0pr 22094 m2detleib 22133 cmpcov2 22894 ufileu 23423 tgpconncompeqg 23616 itg2ge0 25253 mdegldg 25584 abssinper 26030 ppiub 26707 chtub 26715 bposlem2 26788 lgs1 26844 cofcutr 27413 negsbdaylem 27533 precsexlem10 27665 colinearalglem4 28198 axsegconlem1 28206 axpaschlem 28229 axcontlem2 28254 axcontlem4 28256 axcontlem7 28259 axcontlem8 28260 funvtxval 28309 funiedgval 28310 vc0 29858 vcm 29860 nvmval2 29927 nvmf 29929 nvmdi 29932 nvnegneg 29933 nvpncan2 29937 nvaddsub4 29941 nvm1 29949 nvdif 29950 nvpi 29951 nvz0 29952 nvmtri 29955 nvabs 29956 nvge0 29957 imsmetlem 29974 4ipval2 29992 ipval3 29993 ipidsq 29994 dipcj 29998 sspmval 30017 ipasslem1 30115 ipasslem2 30116 dipsubdir 30132 hvsubdistr1 30333 shsubcl 30504 shsel3 30599 shunssi 30652 hosubdi 31092 lnopmi 31284 nmophmi 31315 nmopcoi 31379 opsqrlem6 31429 hstle 31514 hst0 31517 mdsl2i 31606 superpos 31638 dmdbr5ati 31706 f1rnen 31884 resvsca 32475 pthhashvtx 34149 cvmliftphtlem 34339 topdifinffinlem 36276 finixpnum 36521 tan2h 36528 poimirlem3 36539 poimirlem4 36540 poimirlem7 36543 poimirlem16 36552 poimirlem17 36553 poimirlem19 36555 poimirlem20 36556 poimirlem24 36560 poimirlem28 36564 mblfinlem2 36574 mblfinlem4 36576 ismblfin 36577 el3v2 37136 atlatle 38238 pmaple 38680 dihglblem2N 40213 expgcd 41273 sn-ltaddneg 41363 elnnrabdioph 41593 rabren3dioph 41601 zindbi 41733 expgrowth 43142 binomcxplemnotnn0 43163 trelpss 43262 etransc 45047 mogoldbb 46501 pgrple2abl 47089 aacllem 47896 |
Copyright terms: Public domain | W3C validator |