![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1117 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: mp3anl2 1455 vtoclegft 3587 tz7.7 6411 ordin 6415 onfr 6424 fprresex 8333 wfrlem14OLD 8360 wfrlem17OLD 8363 tfrlem11 8426 phplem2 9242 epfrs 9768 zorng 10541 tsk2 10802 tskcard 10818 gruina 10855 muladd11 11428 00id 11433 ltaddneg 11474 negsub 11554 subneg 11555 muleqadd 11904 diveq0 11929 diveq1 11949 conjmul 11981 recp1lt1 12163 nnsub 12307 addltmul 12499 nnunb 12519 zltp1le 12664 gtndiv 12692 eluzp1m1 12901 zbtwnre 12985 rebtwnz 12986 xnn0le2is012 13284 supxrbnd 13366 divelunit 13530 fznatpl1 13614 flbi2 13853 fldiv 13896 modid 13932 modm1p1mod0 13959 fzen2 14006 nn0ennn 14016 seqshft2 14065 seqf1olem1 14078 ser1const 14095 sq01 14260 expnbnd 14267 faclbnd3 14327 faclbnd5 14333 hashunsng 14427 hashunsngx 14428 hashxplem 14468 ccatrid 14621 ccats1val1 14660 ccat2s1fst 14673 sgnn 15129 01sqrexlem2 15278 01sqrexlem7 15283 leabs 15334 abs2dif 15367 cvgrat 15915 cos2t 16210 sin01gt0 16222 cos01gt0 16223 demoivre 16232 demoivreALT 16233 rpnnen2lem5 16250 rpnnen2lem12 16257 omeo 16399 gcd0id 16552 sqgcd 16595 expgcd 16596 isprm3 16716 eulerthlem2 16815 pczpre 16880 pcrec 16891 ressress 17293 mulgm1 19124 unitgrpid 20401 mdet0pr 22613 m2detleib 22652 cmpcov2 23413 ufileu 23942 tgpconncompeqg 24135 itg2ge0 25784 mdegldg 26119 abssinper 26577 ppiub 27262 chtub 27270 bposlem2 27343 lgs1 27399 cofcutr 27972 addsbday 28064 negsbdaylem 28102 precsexlem10 28254 n0sbday 28368 nnzs 28386 pw2bday 28432 zzs12 28437 remulscllem1 28446 colinearalglem4 28938 axsegconlem1 28946 axpaschlem 28969 axcontlem2 28994 axcontlem4 28996 axcontlem7 28999 axcontlem8 29000 funvtxval 29049 funiedgval 29050 vc0 30602 vcm 30604 nvmval2 30671 nvmf 30673 nvmdi 30676 nvnegneg 30677 nvpncan2 30681 nvaddsub4 30685 nvm1 30693 nvdif 30694 nvpi 30695 nvz0 30696 nvmtri 30699 nvabs 30700 nvge0 30701 imsmetlem 30718 4ipval2 30736 ipval3 30737 ipidsq 30738 dipcj 30742 sspmval 30761 ipasslem1 30859 ipasslem2 30860 dipsubdir 30876 hvsubdistr1 31077 shsubcl 31248 shsel3 31343 shunssi 31396 hosubdi 31836 lnopmi 32028 nmophmi 32059 nmopcoi 32123 opsqrlem6 32173 hstle 32258 hst0 32261 mdsl2i 32350 superpos 32382 dmdbr5ati 32450 f1rnen 32645 resvsca 33335 pthhashvtx 35111 cvmliftphtlem 35301 topdifinffinlem 37329 finixpnum 37591 tan2h 37598 poimirlem3 37609 poimirlem4 37610 poimirlem7 37613 poimirlem16 37622 poimirlem17 37623 poimirlem19 37625 poimirlem20 37626 poimirlem24 37630 poimirlem28 37634 mblfinlem2 37644 mblfinlem4 37646 ismblfin 37647 el3v2 38205 atlatle 39301 pmaple 39743 dihglblem2N 41276 sn-ltaddneg 42448 elnnrabdioph 42794 rabren3dioph 42802 zindbi 42934 expgrowth 44330 binomcxplemnotnn0 44351 trelpss 44450 etransc 46238 mogoldbb 47709 pgrple2abl 48209 aacllem 49031 |
Copyright terms: Public domain | W3C validator |