![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 700 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: mp3anl2 1456 vtoclegft 3601 tz7.7 6421 ordin 6425 onfr 6434 fprresex 8351 wfrlem14OLD 8378 wfrlem17OLD 8381 tfrlem11 8444 phplem2 9271 epfrs 9800 zorng 10573 tsk2 10834 tskcard 10850 gruina 10887 muladd11 11460 00id 11465 ltaddneg 11505 negsub 11584 subneg 11585 muleqadd 11934 diveq0 11959 diveq1 11979 conjmul 12011 recp1lt1 12193 nnsub 12337 addltmul 12529 nnunb 12549 zltp1le 12693 gtndiv 12720 eluzp1m1 12929 zbtwnre 13011 rebtwnz 13012 xnn0le2is012 13308 supxrbnd 13390 divelunit 13554 fznatpl1 13638 flbi2 13868 fldiv 13911 modid 13947 modm1p1mod0 13973 fzen2 14020 nn0ennn 14030 seqshft2 14079 seqf1olem1 14092 ser1const 14109 sq01 14274 expnbnd 14281 faclbnd3 14341 faclbnd5 14347 hashunsng 14441 hashunsngx 14442 hashxplem 14482 ccatrid 14635 ccats1val1 14674 ccat2s1fst 14687 sgnn 15143 01sqrexlem2 15292 01sqrexlem7 15297 leabs 15348 abs2dif 15381 cvgrat 15931 cos2t 16226 sin01gt0 16238 cos01gt0 16239 demoivre 16248 demoivreALT 16249 rpnnen2lem5 16266 rpnnen2lem12 16273 omeo 16414 gcd0id 16565 sqgcd 16609 expgcd 16610 isprm3 16730 eulerthlem2 16829 pczpre 16894 pcrec 16905 ressress 17307 mulgm1 19134 unitgrpid 20411 mdet0pr 22619 m2detleib 22658 cmpcov2 23419 ufileu 23948 tgpconncompeqg 24141 itg2ge0 25790 mdegldg 26125 abssinper 26581 ppiub 27266 chtub 27274 bposlem2 27347 lgs1 27403 cofcutr 27976 addsbday 28068 negsbdaylem 28106 precsexlem10 28258 n0sbday 28372 nnzs 28390 pw2bday 28436 zzs12 28441 remulscllem1 28450 colinearalglem4 28942 axsegconlem1 28950 axpaschlem 28973 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 axcontlem8 29004 funvtxval 29053 funiedgval 29054 vc0 30606 vcm 30608 nvmval2 30675 nvmf 30677 nvmdi 30680 nvnegneg 30681 nvpncan2 30685 nvaddsub4 30689 nvm1 30697 nvdif 30698 nvpi 30699 nvz0 30700 nvmtri 30703 nvabs 30704 nvge0 30705 imsmetlem 30722 4ipval2 30740 ipval3 30741 ipidsq 30742 dipcj 30746 sspmval 30765 ipasslem1 30863 ipasslem2 30864 dipsubdir 30880 hvsubdistr1 31081 shsubcl 31252 shsel3 31347 shunssi 31400 hosubdi 31840 lnopmi 32032 nmophmi 32063 nmopcoi 32127 opsqrlem6 32177 hstle 32262 hst0 32265 mdsl2i 32354 superpos 32386 dmdbr5ati 32454 f1rnen 32648 resvsca 33321 pthhashvtx 35095 cvmliftphtlem 35285 topdifinffinlem 37313 finixpnum 37565 tan2h 37572 poimirlem3 37583 poimirlem4 37584 poimirlem7 37587 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem24 37604 poimirlem28 37608 mblfinlem2 37618 mblfinlem4 37620 ismblfin 37621 el3v2 38179 atlatle 39276 pmaple 39718 dihglblem2N 41251 sn-ltaddneg 42418 elnnrabdioph 42763 rabren3dioph 42771 zindbi 42903 expgrowth 44304 binomcxplemnotnn0 44325 trelpss 44424 etransc 46204 mogoldbb 47659 pgrple2abl 48090 aacllem 48895 |
Copyright terms: Public domain | W3C validator |