| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1458 vtoclegft 3554 tz7.7 6358 ordin 6362 onfr 6371 fprresex 8289 tfrlem11 8356 phplem2 9169 epfrs 9684 zorng 10457 tsk2 10718 tskcard 10734 gruina 10771 muladd11 11344 00id 11349 ltaddneg 11390 negsub 11470 subneg 11471 muleqadd 11822 diveq0 11847 diveq1 11867 conjmul 11899 recp1lt1 12081 nnsub 12230 addltmul 12418 nnunb 12438 zltp1le 12583 gtndiv 12611 eluzp1m1 12819 zbtwnre 12905 rebtwnz 12906 xnn0le2is012 13206 supxrbnd 13288 divelunit 13455 fznatpl1 13539 flbi2 13779 fldiv 13822 modid 13858 modm1p1mod0 13887 fzen2 13934 nn0ennn 13944 seqshft2 13993 seqf1olem1 14006 ser1const 14023 sq01 14190 expnbnd 14197 faclbnd3 14257 faclbnd5 14263 hashunsng 14357 hashunsngx 14358 hashxplem 14398 ccatrid 14552 ccats1val1 14591 ccat2s1fst 14604 sgnn 15060 01sqrexlem2 15209 01sqrexlem7 15214 leabs 15265 abs2dif 15299 cvgrat 15849 cos2t 16146 sin01gt0 16158 cos01gt0 16159 demoivre 16168 demoivreALT 16169 rpnnen2lem5 16186 rpnnen2lem12 16193 omeo 16336 gcd0id 16489 sqgcd 16532 expgcd 16533 isprm3 16653 eulerthlem2 16752 pczpre 16818 pcrec 16829 ressress 17217 mulgm1 19026 unitgrpid 20294 mdet0pr 22479 m2detleib 22518 cmpcov2 23277 ufileu 23806 tgpconncompeqg 23999 itg2ge0 25636 mdegldg 25971 abssinper 26430 ppiub 27115 chtub 27123 bposlem2 27196 lgs1 27252 cofcutr 27832 addsbday 27924 negsbdaylem 27962 precsexlem10 28118 onscutlt 28165 n0sbday 28244 bdayn0p1 28258 eucliddivs 28265 nnzs 28274 zzs12 28339 remulscllem1 28351 colinearalglem4 28836 axsegconlem1 28844 axpaschlem 28867 axcontlem2 28892 axcontlem4 28894 axcontlem7 28897 axcontlem8 28898 funvtxval 28945 funiedgval 28946 vc0 30503 vcm 30505 nvmval2 30572 nvmf 30574 nvmdi 30577 nvnegneg 30578 nvpncan2 30582 nvaddsub4 30586 nvm1 30594 nvdif 30595 nvpi 30596 nvz0 30597 nvmtri 30600 nvabs 30601 nvge0 30602 imsmetlem 30619 4ipval2 30637 ipval3 30638 ipidsq 30639 dipcj 30643 sspmval 30662 ipasslem1 30760 ipasslem2 30761 dipsubdir 30777 hvsubdistr1 30978 shsubcl 31149 shsel3 31244 shunssi 31297 hosubdi 31737 lnopmi 31929 nmophmi 31960 nmopcoi 32024 opsqrlem6 32074 hstle 32159 hst0 32162 mdsl2i 32251 superpos 32283 dmdbr5ati 32351 f1rnen 32553 resvsca 33304 pthhashvtx 35115 cvmliftphtlem 35304 topdifinffinlem 37335 finixpnum 37599 tan2h 37606 poimirlem3 37617 poimirlem4 37618 poimirlem7 37621 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem24 37638 poimirlem28 37642 mblfinlem2 37652 mblfinlem4 37654 ismblfin 37655 el3v2 38213 atlatle 39313 pmaple 39755 dihglblem2N 41288 sn-ltaddneg 42442 elnnrabdioph 42795 rabren3dioph 42803 zindbi 42935 expgrowth 44324 binomcxplemnotnn0 44345 trelpss 44444 etransc 46281 mogoldbb 47786 pgrple2abl 48353 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |