Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 699 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: mp3anl2 1456 tz7.7 6307 ordin 6311 onfr 6320 fprresex 8157 wfrlem14OLD 8184 wfrlem17OLD 8187 tfrlem11 8250 phplem2 9029 epfrs 9533 zorng 10306 tsk2 10567 tskcard 10583 gruina 10620 muladd11 11191 00id 11196 ltaddneg 11236 negsub 11315 subneg 11316 muleqadd 11665 diveq1 11712 conjmul 11738 recp1lt1 11919 nnsub 12063 addltmul 12255 nnunb 12275 zltp1le 12416 gtndiv 12443 eluzp1m1 12654 zbtwnre 12732 rebtwnz 12733 xnn0le2is012 13026 supxrbnd 13108 divelunit 13272 fznatpl1 13356 flbi2 13583 fldiv 13626 modid 13662 modm1p1mod0 13688 fzen2 13735 nn0ennn 13745 seqshft2 13795 seqf1olem1 13808 ser1const 13825 sq01 13986 expnbnd 13993 faclbnd3 14052 faclbnd5 14058 hashunsng 14152 hashunsngx 14153 hashxplem 14193 ccatrid 14337 ccats1val1 14377 ccat2s1fst 14396 sgnn 14850 sqrlem2 15000 sqrlem7 15005 leabs 15056 abs2dif 15089 cvgrat 15640 cos2t 15932 sin01gt0 15944 cos01gt0 15945 demoivre 15954 demoivreALT 15955 rpnnen2lem5 15972 rpnnen2lem12 15979 omeo 16120 gcd0id 16271 sqgcd 16315 isprm3 16433 eulerthlem2 16528 pczpre 16593 pcrec 16604 ressress 17003 mulgm1 18769 unitgrpid 19956 mdet0pr 21786 m2detleib 21825 cmpcov2 22586 ufileu 23115 tgpconncompeqg 23308 itg2ge0 24945 mdegldg 25276 abssinper 25722 ppiub 26397 chtub 26405 bposlem2 26478 lgs1 26534 colinearalglem4 27322 axsegconlem1 27330 axpaschlem 27353 axcontlem2 27378 axcontlem4 27380 axcontlem7 27383 axcontlem8 27384 funvtxval 27433 funiedgval 27434 vc0 28981 vcm 28983 nvmval2 29050 nvmf 29052 nvmdi 29055 nvnegneg 29056 nvpncan2 29060 nvaddsub4 29064 nvm1 29072 nvdif 29073 nvpi 29074 nvz0 29075 nvmtri 29078 nvabs 29079 nvge0 29080 imsmetlem 29097 4ipval2 29115 ipval3 29116 ipidsq 29117 dipcj 29121 sspmval 29140 ipasslem1 29238 ipasslem2 29239 dipsubdir 29255 hvsubdistr1 29456 shsubcl 29627 shsel3 29722 shunssi 29775 hosubdi 30215 lnopmi 30407 nmophmi 30438 nmopcoi 30502 opsqrlem6 30552 hstle 30637 hst0 30640 mdsl2i 30729 superpos 30761 dmdbr5ati 30829 f1rnen 31009 resvsca 31574 pthhashvtx 33134 cvmliftphtlem 33324 cofcutr 34137 topdifinffinlem 35562 finixpnum 35806 tan2h 35813 poimirlem3 35824 poimirlem4 35825 poimirlem7 35828 poimirlem16 35837 poimirlem17 35838 poimirlem19 35840 poimirlem20 35841 poimirlem24 35845 poimirlem28 35849 mblfinlem2 35859 mblfinlem4 35861 ismblfin 35862 el3v2 36417 atlatle 37376 pmaple 37817 dihglblem2N 39350 expgcd 40371 elnnrabdioph 40666 rabren3dioph 40674 zindbi 40806 expgrowth 41991 binomcxplemnotnn0 42012 trelpss 42111 etransc 43873 mogoldbb 45295 pgrple2abl 45759 aacllem 46563 |
Copyright terms: Public domain | W3C validator |