| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1458 vtoclegft 3572 tz7.7 6383 ordin 6387 onfr 6396 fprresex 8314 wfrlem14OLD 8341 wfrlem17OLD 8344 tfrlem11 8407 phplem2 9224 epfrs 9750 zorng 10523 tsk2 10784 tskcard 10800 gruina 10837 muladd11 11410 00id 11415 ltaddneg 11456 negsub 11536 subneg 11537 muleqadd 11886 diveq0 11911 diveq1 11931 conjmul 11963 recp1lt1 12145 nnsub 12289 addltmul 12482 nnunb 12502 zltp1le 12647 gtndiv 12675 eluzp1m1 12883 zbtwnre 12967 rebtwnz 12968 xnn0le2is012 13267 supxrbnd 13349 divelunit 13516 fznatpl1 13600 flbi2 13839 fldiv 13882 modid 13918 modm1p1mod0 13945 fzen2 13992 nn0ennn 14002 seqshft2 14051 seqf1olem1 14064 ser1const 14081 sq01 14248 expnbnd 14255 faclbnd3 14315 faclbnd5 14321 hashunsng 14415 hashunsngx 14416 hashxplem 14456 ccatrid 14610 ccats1val1 14649 ccat2s1fst 14662 sgnn 15118 01sqrexlem2 15267 01sqrexlem7 15272 leabs 15323 abs2dif 15356 cvgrat 15904 cos2t 16201 sin01gt0 16213 cos01gt0 16214 demoivre 16223 demoivreALT 16224 rpnnen2lem5 16241 rpnnen2lem12 16248 omeo 16390 gcd0id 16543 sqgcd 16586 expgcd 16587 isprm3 16707 eulerthlem2 16806 pczpre 16872 pcrec 16883 ressress 17273 mulgm1 19082 unitgrpid 20350 mdet0pr 22535 m2detleib 22574 cmpcov2 23333 ufileu 23862 tgpconncompeqg 24055 itg2ge0 25693 mdegldg 26028 abssinper 26487 ppiub 27172 chtub 27180 bposlem2 27253 lgs1 27309 cofcutr 27889 addsbday 27981 negsbdaylem 28019 precsexlem10 28175 onscutlt 28222 n0sbday 28301 bdayn0p1 28315 eucliddivs 28322 nnzs 28331 zzs12 28396 remulscllem1 28408 colinearalglem4 28893 axsegconlem1 28901 axpaschlem 28924 axcontlem2 28949 axcontlem4 28951 axcontlem7 28954 axcontlem8 28955 funvtxval 29002 funiedgval 29003 vc0 30560 vcm 30562 nvmval2 30629 nvmf 30631 nvmdi 30634 nvnegneg 30635 nvpncan2 30639 nvaddsub4 30643 nvm1 30651 nvdif 30652 nvpi 30653 nvz0 30654 nvmtri 30657 nvabs 30658 nvge0 30659 imsmetlem 30676 4ipval2 30694 ipval3 30695 ipidsq 30696 dipcj 30700 sspmval 30719 ipasslem1 30817 ipasslem2 30818 dipsubdir 30834 hvsubdistr1 31035 shsubcl 31206 shsel3 31301 shunssi 31354 hosubdi 31794 lnopmi 31986 nmophmi 32017 nmopcoi 32081 opsqrlem6 32131 hstle 32216 hst0 32219 mdsl2i 32308 superpos 32340 dmdbr5ati 32408 f1rnen 32612 resvsca 33353 pthhashvtx 35155 cvmliftphtlem 35344 topdifinffinlem 37370 finixpnum 37634 tan2h 37641 poimirlem3 37652 poimirlem4 37653 poimirlem7 37656 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem20 37669 poimirlem24 37673 poimirlem28 37677 mblfinlem2 37687 mblfinlem4 37689 ismblfin 37690 el3v2 38248 atlatle 39343 pmaple 39785 dihglblem2N 41318 sn-ltaddneg 42460 elnnrabdioph 42805 rabren3dioph 42813 zindbi 42945 expgrowth 44334 binomcxplemnotnn0 44355 trelpss 44454 etransc 46292 mogoldbb 47779 pgrple2abl 48320 aacllem 49645 |
| Copyright terms: Public domain | W3C validator |