| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3anl2 1457 vtoclegft 3587 tz7.7 6409 ordin 6413 onfr 6422 fprresex 8336 wfrlem14OLD 8363 wfrlem17OLD 8366 tfrlem11 8429 phplem2 9246 epfrs 9772 zorng 10545 tsk2 10806 tskcard 10822 gruina 10859 muladd11 11432 00id 11437 ltaddneg 11478 negsub 11558 subneg 11559 muleqadd 11908 diveq0 11933 diveq1 11953 conjmul 11985 recp1lt1 12167 nnsub 12311 addltmul 12504 nnunb 12524 zltp1le 12669 gtndiv 12697 eluzp1m1 12905 zbtwnre 12989 rebtwnz 12990 xnn0le2is012 13289 supxrbnd 13371 divelunit 13535 fznatpl1 13619 flbi2 13858 fldiv 13901 modid 13937 modm1p1mod0 13964 fzen2 14011 nn0ennn 14021 seqshft2 14070 seqf1olem1 14083 ser1const 14100 sq01 14265 expnbnd 14272 faclbnd3 14332 faclbnd5 14338 hashunsng 14432 hashunsngx 14433 hashxplem 14473 ccatrid 14626 ccats1val1 14665 ccat2s1fst 14678 sgnn 15134 01sqrexlem2 15283 01sqrexlem7 15288 leabs 15339 abs2dif 15372 cvgrat 15920 cos2t 16215 sin01gt0 16227 cos01gt0 16228 demoivre 16237 demoivreALT 16238 rpnnen2lem5 16255 rpnnen2lem12 16262 omeo 16404 gcd0id 16557 sqgcd 16600 expgcd 16601 isprm3 16721 eulerthlem2 16820 pczpre 16886 pcrec 16897 ressress 17294 mulgm1 19113 unitgrpid 20386 mdet0pr 22599 m2detleib 22638 cmpcov2 23399 ufileu 23928 tgpconncompeqg 24121 itg2ge0 25771 mdegldg 26106 abssinper 26564 ppiub 27249 chtub 27257 bposlem2 27330 lgs1 27386 cofcutr 27959 addsbday 28051 negsbdaylem 28089 precsexlem10 28241 n0sbday 28355 nnzs 28373 pw2bday 28419 zzs12 28424 remulscllem1 28433 colinearalglem4 28925 axsegconlem1 28933 axpaschlem 28956 axcontlem2 28981 axcontlem4 28983 axcontlem7 28986 axcontlem8 28987 funvtxval 29036 funiedgval 29037 vc0 30594 vcm 30596 nvmval2 30663 nvmf 30665 nvmdi 30668 nvnegneg 30669 nvpncan2 30673 nvaddsub4 30677 nvm1 30685 nvdif 30686 nvpi 30687 nvz0 30688 nvmtri 30691 nvabs 30692 nvge0 30693 imsmetlem 30710 4ipval2 30728 ipval3 30729 ipidsq 30730 dipcj 30734 sspmval 30753 ipasslem1 30851 ipasslem2 30852 dipsubdir 30868 hvsubdistr1 31069 shsubcl 31240 shsel3 31335 shunssi 31388 hosubdi 31828 lnopmi 32020 nmophmi 32051 nmopcoi 32115 opsqrlem6 32165 hstle 32250 hst0 32253 mdsl2i 32342 superpos 32374 dmdbr5ati 32442 f1rnen 32640 resvsca 33357 pthhashvtx 35134 cvmliftphtlem 35323 topdifinffinlem 37349 finixpnum 37613 tan2h 37620 poimirlem3 37631 poimirlem4 37632 poimirlem7 37635 poimirlem16 37644 poimirlem17 37645 poimirlem19 37647 poimirlem20 37648 poimirlem24 37652 poimirlem28 37656 mblfinlem2 37666 mblfinlem4 37668 ismblfin 37669 el3v2 38227 atlatle 39322 pmaple 39764 dihglblem2N 41297 sn-ltaddneg 42477 elnnrabdioph 42823 rabren3dioph 42831 zindbi 42963 expgrowth 44359 binomcxplemnotnn0 44380 trelpss 44479 etransc 46303 mogoldbb 47777 pgrple2abl 48286 aacllem 49375 |
| Copyright terms: Public domain | W3C validator |