Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1116 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 697 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: mp3anl2 1454 tz7.7 6289 ordin 6293 onfr 6302 fprresex 8110 wfrlem14OLD 8137 wfrlem17OLD 8140 tfrlem11 8203 phplem2 8955 epfrs 9472 zorng 10244 tsk2 10505 tskcard 10521 gruina 10558 muladd11 11128 00id 11133 ltaddneg 11173 negsub 11252 subneg 11253 muleqadd 11602 diveq1 11649 conjmul 11675 recp1lt1 11856 nnsub 12000 addltmul 12192 nnunb 12212 zltp1le 12353 gtndiv 12380 eluzp1m1 12590 zbtwnre 12668 rebtwnz 12669 xnn0le2is012 12962 supxrbnd 13044 divelunit 13208 fznatpl1 13292 flbi2 13518 fldiv 13561 modid 13597 modm1p1mod0 13623 fzen2 13670 nn0ennn 13680 seqshft2 13730 seqf1olem1 13743 ser1const 13760 sq01 13921 expnbnd 13928 faclbnd3 13987 faclbnd5 13993 hashunsng 14088 hashunsngx 14089 hashxplem 14129 ccatrid 14273 ccats1val1 14313 ccat2s1fst 14332 sgnn 14786 sqrlem2 14936 sqrlem7 14941 leabs 14992 abs2dif 15025 cvgrat 15576 cos2t 15868 sin01gt0 15880 cos01gt0 15881 demoivre 15890 demoivreALT 15891 rpnnen2lem5 15908 rpnnen2lem12 15915 omeo 16056 gcd0id 16207 sqgcd 16251 isprm3 16369 eulerthlem2 16464 pczpre 16529 pcrec 16540 ressress 16939 mulgm1 18705 unitgrpid 19892 mdet0pr 21722 m2detleib 21761 cmpcov2 22522 ufileu 23051 tgpconncompeqg 23244 itg2ge0 24881 mdegldg 25212 abssinper 25658 ppiub 26333 chtub 26341 bposlem2 26414 lgs1 26470 colinearalglem4 27258 axsegconlem1 27266 axpaschlem 27289 axcontlem2 27314 axcontlem4 27316 axcontlem7 27319 axcontlem8 27320 funvtxval 27369 funiedgval 27370 vc0 28915 vcm 28917 nvmval2 28984 nvmf 28986 nvmdi 28989 nvnegneg 28990 nvpncan2 28994 nvaddsub4 28998 nvm1 29006 nvdif 29007 nvpi 29008 nvz0 29009 nvmtri 29012 nvabs 29013 nvge0 29014 imsmetlem 29031 4ipval2 29049 ipval3 29050 ipidsq 29051 dipcj 29055 sspmval 29074 ipasslem1 29172 ipasslem2 29173 dipsubdir 29189 hvsubdistr1 29390 shsubcl 29561 shsel3 29656 shunssi 29709 hosubdi 30149 lnopmi 30341 nmophmi 30372 nmopcoi 30436 opsqrlem6 30486 hstle 30571 hst0 30574 mdsl2i 30663 superpos 30695 dmdbr5ati 30763 f1rnen 30943 resvsca 31508 pthhashvtx 33068 cvmliftphtlem 33258 cofcutr 34071 topdifinffinlem 35497 finixpnum 35741 tan2h 35748 poimirlem3 35759 poimirlem4 35760 poimirlem7 35763 poimirlem16 35772 poimirlem17 35773 poimirlem19 35775 poimirlem20 35776 poimirlem24 35780 poimirlem28 35784 mblfinlem2 35794 mblfinlem4 35796 ismblfin 35797 el3v2 36352 atlatle 37313 pmaple 37754 dihglblem2N 39287 expgcd 40314 elnnrabdioph 40609 rabren3dioph 40617 zindbi 40748 expgrowth 41906 binomcxplemnotnn0 41927 trelpss 42026 etransc 43778 mogoldbb 45189 pgrple2abl 45653 aacllem 46457 |
Copyright terms: Public domain | W3C validator |