HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmophmi Structured version   Visualization version   GIF version

Theorem nmophmi 30294
Description: The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmophm.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmophmi (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))

Proof of Theorem nmophmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmophm.1 . . . . . . . . . . 11 𝑇 ∈ BndLinOp
2 bdopf 30125 . . . . . . . . . . 11 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
4 homval 30004 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
53, 4mp3an2 1447 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
65fveq2d 6760 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = (norm‘(𝐴 · (𝑇𝑥))))
73ffvelrni 6942 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
8 norm-iii 29403 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
97, 8sylan2 592 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
106, 9eqtrd 2778 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
12 normcl 29388 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
137, 12syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1413ad2antlr 723 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
15 abscl 14918 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
16 absge0 14927 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1715, 16jca 511 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1817ad2antrr 722 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
19 nmoplb 30170 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
203, 19mp3an1 1446 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
2120adantll 710 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
22 nmopre 30133 . . . . . . . . 9 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
231, 22ax-mp 5 . . . . . . . 8 (normop𝑇) ∈ ℝ
24 lemul2a 11760 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2523, 24mp3anl2 1454 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2614, 18, 21, 25syl21anc 834 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2711, 26eqbrtrd 5092 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))
2827ex 412 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
2928ralrimiva 3107 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
30 homulcl 30022 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
313, 30mpan2 687 . . . 4 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
32 remulcl 10887 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3315, 23, 32sylancl 585 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3433rexrd 10956 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*)
35 nmopub 30171 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3631, 34, 35syl2anc 583 . . 3 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3729, 36mpbird 256 . 2 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))
38 fveq2 6756 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
39 abs0 14925 . . . . . . . 8 (abs‘0) = 0
4038, 39eqtrdi 2795 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = 0)
4140oveq1d 7270 . . . . . 6 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = (0 · (normop𝑇)))
4223recni 10920 . . . . . . 7 (normop𝑇) ∈ ℂ
4342mul02i 11094 . . . . . 6 (0 · (normop𝑇)) = 0
4441, 43eqtrdi 2795 . . . . 5 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = 0)
4544adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) = 0)
46 nmopge0 30174 . . . . . 6 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4731, 46syl 17 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4847adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4945, 48eqbrtrd 5092 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
50 nmoplb 30170 . . . . . . . . . . . 12 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5131, 50syl3an1 1161 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
52513expa 1116 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5311, 52eqbrtrrd 5094 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5453adantllr 715 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5513adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
56 nmopxr 30129 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
5731, 56syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
58 nmopgtmnf 30131 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝐴 ·op 𝑇)))
5931, 58syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -∞ < (normop‘(𝐴 ·op 𝑇)))
60 xrre 12832 . . . . . . . . . . . 12 ((((normop‘(𝐴 ·op 𝑇)) ∈ ℝ* ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝐴 ·op 𝑇)) ∧ (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6157, 33, 59, 37, 60syl22anc 835 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6261ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6315ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (abs‘𝐴) ∈ ℝ)
64 absgt0 14964 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)))
6564biimpa 476 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 < (abs‘𝐴))
6665adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → 0 < (abs‘𝐴))
67 lemuldiv2 11786 . . . . . . . . . 10 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6855, 62, 63, 66, 67syl112anc 1372 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6968adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7054, 69mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
7170ex 412 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7271ralrimiva 3107 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7361adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
7415adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
75 abs00 14929 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
7675necon3bid 2987 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
7776biimpar 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
7873, 74, 77redivcld 11733 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ)
7978rexrd 10956 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*)
80 nmopub 30171 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
813, 79, 80sylancr 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
8272, 81mpbird 256 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
8323a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
84 lemuldiv2 11786 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8583, 73, 74, 65, 84syl112anc 1372 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8682, 85mpbird 256 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8749, 86pm2.61dane 3031 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8861, 33letri3d 11047 . 2 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)) ↔ ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ∧ ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))))
8937, 87, 88mpbir2and 709 1 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  abscabs 14873  chba 29182   · csm 29184  normcno 29186   ·op chot 29202  normopcnop 29208  BndLinOpcbo 29211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-gid 28757  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-homul 29994  df-nmop 30102  df-lnop 30104  df-bdop 30105
This theorem is referenced by:  bdophmi  30295
  Copyright terms: Public domain W3C validator