| Step | Hyp | Ref
| Expression |
| 1 | | nmophm.1 |
. . . . . . . . . . 11
⊢ 𝑇 ∈
BndLinOp |
| 2 | | bdopf 31881 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶
ℋ) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑇: ℋ⟶
ℋ |
| 4 | | homval 31760 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
((𝐴
·op 𝑇)‘𝑥) = (𝐴 ·ℎ (𝑇‘𝑥))) |
| 5 | 3, 4 | mp3an2 1451 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op
𝑇)‘𝑥) = (𝐴 ·ℎ (𝑇‘𝑥))) |
| 6 | 5 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) = (normℎ‘(𝐴
·ℎ (𝑇‘𝑥)))) |
| 7 | 3 | ffvelcdmi 7103 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 8 | | norm-iii 31159 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) →
(normℎ‘(𝐴 ·ℎ (𝑇‘𝑥))) = ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥)))) |
| 9 | 7, 8 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝐴 ·ℎ (𝑇‘𝑥))) = ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥)))) |
| 10 | 6, 9 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥)))) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥)))) |
| 12 | | normcl 31144 |
. . . . . . . . 9
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 13 | 7, 12 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 14 | 13 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 15 | | abscl 15317 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
| 16 | | absge0 15326 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 0 ≤
(abs‘𝐴)) |
| 17 | 15, 16 | jca 511 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) |
| 18 | 17 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) |
| 19 | | nmoplb 31926 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) |
| 20 | 3, 19 | mp3an1 1450 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) |
| 21 | 20 | adantll 714 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) |
| 22 | | nmopre 31889 |
. . . . . . . . 9
⊢ (𝑇 ∈ BndLinOp →
(normop‘𝑇)
∈ ℝ) |
| 23 | 1, 22 | ax-mp 5 |
. . . . . . . 8
⊢
(normop‘𝑇) ∈ ℝ |
| 24 | | lemul2a 12122 |
. . . . . . . 8
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧
(normop‘𝑇)
∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) → ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ ((abs‘𝐴) · (normop‘𝑇))) |
| 25 | 23, 24 | mp3anl2 1458 |
. . . . . . 7
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) → ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ ((abs‘𝐴) · (normop‘𝑇))) |
| 26 | 14, 18, 21, 25 | syl21anc 838 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ ((abs‘𝐴) · (normop‘𝑇))) |
| 27 | 11, 26 | eqbrtrd 5165 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop‘𝑇))) |
| 28 | 27 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) →
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop‘𝑇)))) |
| 29 | 28 | ralrimiva 3146 |
. . 3
⊢ (𝐴 ∈ ℂ →
∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop‘𝑇)))) |
| 30 | | homulcl 31778 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (𝐴
·op 𝑇): ℋ⟶ ℋ) |
| 31 | 3, 30 | mpan2 691 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 ·op
𝑇): ℋ⟶
ℋ) |
| 32 | | remulcl 11240 |
. . . . . 6
⊢
(((abs‘𝐴)
∈ ℝ ∧ (normop‘𝑇) ∈ ℝ) → ((abs‘𝐴) ·
(normop‘𝑇)) ∈ ℝ) |
| 33 | 15, 23, 32 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) ·
(normop‘𝑇)) ∈ ℝ) |
| 34 | 33 | rexrd 11311 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) ·
(normop‘𝑇)) ∈
ℝ*) |
| 35 | | nmopub 31927 |
. . . 4
⊢ (((𝐴 ·op
𝑇): ℋ⟶ ℋ
∧ ((abs‘𝐴)
· (normop‘𝑇)) ∈ ℝ*) →
((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) ·
(normop‘𝑇)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop‘𝑇))))) |
| 36 | 31, 34, 35 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ ℂ →
((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) ·
(normop‘𝑇)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop‘𝑇))))) |
| 37 | 29, 36 | mpbird 257 |
. 2
⊢ (𝐴 ∈ ℂ →
(normop‘(𝐴
·op 𝑇)) ≤ ((abs‘𝐴) · (normop‘𝑇))) |
| 38 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝐴 = 0 → (abs‘𝐴) =
(abs‘0)) |
| 39 | | abs0 15324 |
. . . . . . . 8
⊢
(abs‘0) = 0 |
| 40 | 38, 39 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
| 41 | 40 | oveq1d 7446 |
. . . . . 6
⊢ (𝐴 = 0 → ((abs‘𝐴) ·
(normop‘𝑇)) = (0 ·
(normop‘𝑇))) |
| 42 | 23 | recni 11275 |
. . . . . . 7
⊢
(normop‘𝑇) ∈ ℂ |
| 43 | 42 | mul02i 11450 |
. . . . . 6
⊢ (0
· (normop‘𝑇)) = 0 |
| 44 | 41, 43 | eqtrdi 2793 |
. . . . 5
⊢ (𝐴 = 0 → ((abs‘𝐴) ·
(normop‘𝑇)) = 0) |
| 45 | 44 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) ·
(normop‘𝑇)) = 0) |
| 46 | | nmopge0 31930 |
. . . . . 6
⊢ ((𝐴 ·op
𝑇): ℋ⟶ ℋ
→ 0 ≤ (normop‘(𝐴 ·op 𝑇))) |
| 47 | 31, 46 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 0 ≤
(normop‘(𝐴
·op 𝑇))) |
| 48 | 47 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → 0 ≤
(normop‘(𝐴
·op 𝑇))) |
| 49 | 45, 48 | eqbrtrd 5165 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) ·
(normop‘𝑇)) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 50 | | nmoplb 31926 |
. . . . . . . . . . . 12
⊢ (((𝐴 ·op
𝑇): ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ
∧ (normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 51 | 31, 50 | syl3an1 1164 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 52 | 51 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 53 | 11, 52 | eqbrtrrd 5167 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 54 | 53 | adantllr 719 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → ((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 55 | 13 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 56 | | nmopxr 31885 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ·op
𝑇): ℋ⟶ ℋ
→ (normop‘(𝐴 ·op 𝑇)) ∈
ℝ*) |
| 57 | 31, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(normop‘(𝐴
·op 𝑇)) ∈
ℝ*) |
| 58 | | nmopgtmnf 31887 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ·op
𝑇): ℋ⟶ ℋ
→ -∞ < (normop‘(𝐴 ·op 𝑇))) |
| 59 | 31, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → -∞
< (normop‘(𝐴 ·op 𝑇))) |
| 60 | | xrre 13211 |
. . . . . . . . . . . 12
⊢
((((normop‘(𝐴 ·op 𝑇)) ∈ ℝ*
∧ ((abs‘𝐴)
· (normop‘𝑇)) ∈ ℝ) ∧ (-∞ <
(normop‘(𝐴
·op 𝑇)) ∧ (normop‘(𝐴 ·op
𝑇)) ≤ ((abs‘𝐴) ·
(normop‘𝑇)))) → (normop‘(𝐴 ·op
𝑇)) ∈
ℝ) |
| 61 | 57, 33, 59, 37, 60 | syl22anc 839 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(normop‘(𝐴
·op 𝑇)) ∈ ℝ) |
| 62 | 61 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) →
(normop‘(𝐴
·op 𝑇)) ∈ ℝ) |
| 63 | 15 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) →
(abs‘𝐴) ∈
ℝ) |
| 64 | | absgt0 15363 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 <
(abs‘𝐴))) |
| 65 | 64 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 <
(abs‘𝐴)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → 0 <
(abs‘𝐴)) |
| 67 | | lemuldiv2 12149 |
. . . . . . . . . 10
⊢
(((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧
(normop‘(𝐴
·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 <
(abs‘𝐴))) →
(((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ (normop‘(𝐴 ·op
𝑇)) ↔
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)))) |
| 68 | 55, 62, 63, 66, 67 | syl112anc 1376 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) →
(((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ (normop‘(𝐴 ·op
𝑇)) ↔
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)))) |
| 69 | 68 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) → (((abs‘𝐴) ·
(normℎ‘(𝑇‘𝑥))) ≤ (normop‘(𝐴 ·op
𝑇)) ↔
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)))) |
| 70 | 54, 69 | mpbid 232 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴))) |
| 71 | 70 | ex 412 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) →
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)))) |
| 72 | 71 | ralrimiva 3146 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)))) |
| 73 | 61 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(normop‘(𝐴
·op 𝑇)) ∈ ℝ) |
| 74 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℝ) |
| 75 | | abs00 15328 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) = 0 ↔
𝐴 = 0)) |
| 76 | 75 | necon3bid 2985 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) ≠ 0
↔ 𝐴 ≠
0)) |
| 77 | 76 | biimpar 477 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0) |
| 78 | 73, 74, 77 | redivcld 12095 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈
ℝ) |
| 79 | 78 | rexrd 11311 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈
ℝ*) |
| 80 | | nmopub 31927 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*)
→ ((normop‘𝑇) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴))))) |
| 81 | 3, 79, 80 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((normop‘𝑇) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘(𝐴 ·op
𝑇)) / (abs‘𝐴))))) |
| 82 | 72, 81 | mpbird 257 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(normop‘𝑇)
≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))) |
| 83 | 23 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(normop‘𝑇)
∈ ℝ) |
| 84 | | lemuldiv2 12149 |
. . . . 5
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normop‘(𝐴
·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 <
(abs‘𝐴))) →
(((abs‘𝐴) ·
(normop‘𝑇)) ≤ (normop‘(𝐴 ·op
𝑇)) ↔
(normop‘𝑇)
≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))) |
| 85 | 83, 73, 74, 65, 84 | syl112anc 1376 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(((abs‘𝐴) ·
(normop‘𝑇)) ≤ (normop‘(𝐴 ·op
𝑇)) ↔
(normop‘𝑇)
≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))) |
| 86 | 82, 85 | mpbird 257 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((abs‘𝐴) ·
(normop‘𝑇)) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 87 | 49, 86 | pm2.61dane 3029 |
. 2
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) ·
(normop‘𝑇)) ≤ (normop‘(𝐴 ·op
𝑇))) |
| 88 | 61, 33 | letri3d 11403 |
. 2
⊢ (𝐴 ∈ ℂ →
((normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) ·
(normop‘𝑇)) ↔ ((normop‘(𝐴 ·op
𝑇)) ≤ ((abs‘𝐴) ·
(normop‘𝑇)) ∧ ((abs‘𝐴) · (normop‘𝑇)) ≤
(normop‘(𝐴
·op 𝑇))))) |
| 89 | 37, 87, 88 | mpbir2and 713 |
1
⊢ (𝐴 ∈ ℂ →
(normop‘(𝐴
·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) |