HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmophmi Structured version   Visualization version   GIF version

Theorem nmophmi 31854
Description: The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmophm.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmophmi (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))

Proof of Theorem nmophmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmophm.1 . . . . . . . . . . 11 𝑇 ∈ BndLinOp
2 bdopf 31685 . . . . . . . . . . 11 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
4 homval 31564 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
53, 4mp3an2 1446 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
65fveq2d 6901 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = (norm‘(𝐴 · (𝑇𝑥))))
73ffvelcdmi 7093 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
8 norm-iii 30963 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
97, 8sylan2 592 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
106, 9eqtrd 2768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
12 normcl 30948 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
137, 12syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1413ad2antlr 726 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
15 abscl 15258 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
16 absge0 15267 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1715, 16jca 511 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1817ad2antrr 725 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
19 nmoplb 31730 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
203, 19mp3an1 1445 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
2120adantll 713 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
22 nmopre 31693 . . . . . . . . 9 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
231, 22ax-mp 5 . . . . . . . 8 (normop𝑇) ∈ ℝ
24 lemul2a 12100 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2523, 24mp3anl2 1453 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2614, 18, 21, 25syl21anc 837 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2711, 26eqbrtrd 5170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))
2827ex 412 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
2928ralrimiva 3143 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
30 homulcl 31582 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
313, 30mpan2 690 . . . 4 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
32 remulcl 11224 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3315, 23, 32sylancl 585 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3433rexrd 11295 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*)
35 nmopub 31731 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3631, 34, 35syl2anc 583 . . 3 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3729, 36mpbird 257 . 2 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))
38 fveq2 6897 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
39 abs0 15265 . . . . . . . 8 (abs‘0) = 0
4038, 39eqtrdi 2784 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = 0)
4140oveq1d 7435 . . . . . 6 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = (0 · (normop𝑇)))
4223recni 11259 . . . . . . 7 (normop𝑇) ∈ ℂ
4342mul02i 11434 . . . . . 6 (0 · (normop𝑇)) = 0
4441, 43eqtrdi 2784 . . . . 5 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = 0)
4544adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) = 0)
46 nmopge0 31734 . . . . . 6 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4731, 46syl 17 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4847adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4945, 48eqbrtrd 5170 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
50 nmoplb 31730 . . . . . . . . . . . 12 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5131, 50syl3an1 1161 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
52513expa 1116 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5311, 52eqbrtrrd 5172 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5453adantllr 718 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5513adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
56 nmopxr 31689 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
5731, 56syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
58 nmopgtmnf 31691 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝐴 ·op 𝑇)))
5931, 58syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -∞ < (normop‘(𝐴 ·op 𝑇)))
60 xrre 13181 . . . . . . . . . . . 12 ((((normop‘(𝐴 ·op 𝑇)) ∈ ℝ* ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝐴 ·op 𝑇)) ∧ (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6157, 33, 59, 37, 60syl22anc 838 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6261ad2antrr 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6315ad2antrr 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (abs‘𝐴) ∈ ℝ)
64 absgt0 15304 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)))
6564biimpa 476 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 < (abs‘𝐴))
6665adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → 0 < (abs‘𝐴))
67 lemuldiv2 12126 . . . . . . . . . 10 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6855, 62, 63, 66, 67syl112anc 1372 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6968adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7054, 69mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
7170ex 412 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7271ralrimiva 3143 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7361adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
7415adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
75 abs00 15269 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
7675necon3bid 2982 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
7776biimpar 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
7873, 74, 77redivcld 12073 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ)
7978rexrd 11295 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*)
80 nmopub 31731 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
813, 79, 80sylancr 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
8272, 81mpbird 257 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
8323a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
84 lemuldiv2 12126 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8583, 73, 74, 65, 84syl112anc 1372 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8682, 85mpbird 257 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8749, 86pm2.61dane 3026 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8861, 33letri3d 11387 . 2 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)) ↔ ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ∧ ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))))
8937, 87, 88mpbir2and 712 1 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  wral 3058   class class class wbr 5148  wf 6544  cfv 6548  (class class class)co 7420  cc 11137  cr 11138  0cc0 11139  1c1 11140   · cmul 11144  -∞cmnf 11277  *cxr 11278   < clt 11279  cle 11280   / cdiv 11902  abscabs 15214  chba 30742   · csm 30744  normcno 30746   ·op chot 30762  normopcnop 30768  BndLinOpcbo 30771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-hilex 30822  ax-hfvadd 30823  ax-hvcom 30824  ax-hvass 30825  ax-hv0cl 30826  ax-hvaddid 30827  ax-hfvmul 30828  ax-hvmulid 30829  ax-hvmulass 30830  ax-hvdistr1 30831  ax-hvdistr2 30832  ax-hvmul0 30833  ax-hfi 30902  ax-his1 30905  ax-his2 30906  ax-his3 30907  ax-his4 30908
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-grpo 30316  df-gid 30317  df-ablo 30368  df-vc 30382  df-nv 30415  df-va 30418  df-ba 30419  df-sm 30420  df-0v 30421  df-nmcv 30423  df-hnorm 30791  df-hba 30792  df-hvsub 30794  df-homul 31554  df-nmop 31662  df-lnop 31664  df-bdop 31665
This theorem is referenced by:  bdophmi  31855
  Copyright terms: Public domain W3C validator