HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmophmi Structured version   Visualization version   GIF version

Theorem nmophmi 32010
Description: The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmophm.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmophmi (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))

Proof of Theorem nmophmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmophm.1 . . . . . . . . . . 11 𝑇 ∈ BndLinOp
2 bdopf 31841 . . . . . . . . . . 11 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
4 homval 31720 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
53, 4mp3an2 1451 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
65fveq2d 6844 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = (norm‘(𝐴 · (𝑇𝑥))))
73ffvelcdmi 7037 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
8 norm-iii 31119 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
97, 8sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
106, 9eqtrd 2764 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
12 normcl 31104 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
137, 12syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1413ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
15 abscl 15220 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
16 absge0 15229 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1715, 16jca 511 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1817ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
19 nmoplb 31886 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
203, 19mp3an1 1450 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
2120adantll 714 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
22 nmopre 31849 . . . . . . . . 9 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
231, 22ax-mp 5 . . . . . . . 8 (normop𝑇) ∈ ℝ
24 lemul2a 12013 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2523, 24mp3anl2 1458 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2614, 18, 21, 25syl21anc 837 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2711, 26eqbrtrd 5124 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))
2827ex 412 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
2928ralrimiva 3125 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
30 homulcl 31738 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
313, 30mpan2 691 . . . 4 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
32 remulcl 11129 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3315, 23, 32sylancl 586 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3433rexrd 11200 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*)
35 nmopub 31887 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3631, 34, 35syl2anc 584 . . 3 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3729, 36mpbird 257 . 2 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))
38 fveq2 6840 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
39 abs0 15227 . . . . . . . 8 (abs‘0) = 0
4038, 39eqtrdi 2780 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = 0)
4140oveq1d 7384 . . . . . 6 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = (0 · (normop𝑇)))
4223recni 11164 . . . . . . 7 (normop𝑇) ∈ ℂ
4342mul02i 11339 . . . . . 6 (0 · (normop𝑇)) = 0
4441, 43eqtrdi 2780 . . . . 5 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = 0)
4544adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) = 0)
46 nmopge0 31890 . . . . . 6 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4731, 46syl 17 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4847adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4945, 48eqbrtrd 5124 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
50 nmoplb 31886 . . . . . . . . . . . 12 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5131, 50syl3an1 1163 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
52513expa 1118 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5311, 52eqbrtrrd 5126 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5453adantllr 719 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5513adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
56 nmopxr 31845 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
5731, 56syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
58 nmopgtmnf 31847 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝐴 ·op 𝑇)))
5931, 58syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -∞ < (normop‘(𝐴 ·op 𝑇)))
60 xrre 13105 . . . . . . . . . . . 12 ((((normop‘(𝐴 ·op 𝑇)) ∈ ℝ* ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝐴 ·op 𝑇)) ∧ (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6157, 33, 59, 37, 60syl22anc 838 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6261ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6315ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (abs‘𝐴) ∈ ℝ)
64 absgt0 15267 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)))
6564biimpa 476 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 < (abs‘𝐴))
6665adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → 0 < (abs‘𝐴))
67 lemuldiv2 12040 . . . . . . . . . 10 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6855, 62, 63, 66, 67syl112anc 1376 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6968adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7054, 69mpbid 232 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
7170ex 412 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7271ralrimiva 3125 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7361adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
7415adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
75 abs00 15231 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
7675necon3bid 2969 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
7776biimpar 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
7873, 74, 77redivcld 11986 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ)
7978rexrd 11200 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*)
80 nmopub 31887 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
813, 79, 80sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
8272, 81mpbird 257 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
8323a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
84 lemuldiv2 12040 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8583, 73, 74, 65, 84syl112anc 1376 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8682, 85mpbird 257 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8749, 86pm2.61dane 3012 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8861, 33letri3d 11292 . 2 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)) ↔ ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ∧ ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))))
8937, 87, 88mpbir2and 713 1 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  abscabs 15176  chba 30898   · csm 30900  normcno 30902   ·op chot 30918  normopcnop 30924  BndLinOpcbo 30927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvmulass 30986  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-grpo 30472  df-gid 30473  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-nmcv 30579  df-hnorm 30947  df-hba 30948  df-hvsub 30950  df-homul 31710  df-nmop 31818  df-lnop 31820  df-bdop 31821
This theorem is referenced by:  bdophmi  32011
  Copyright terms: Public domain W3C validator