|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mpii | Structured version Visualization version GIF version | ||
| Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 31-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| mpii.1 | ⊢ 𝜒 | 
| mpii.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| mpii | ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpii.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → 𝜒) | 
| 3 | mpii.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: intmin 4968 dfiin2g 5032 ssorduni 7799 sucexeloniOLD 7830 suceloniOLD 7832 lublecllem 18405 irredmul 20429 opnneiid 23134 isufil2 23916 mdbr3 32316 mdbr4 32317 dmdbr5 32327 filnetlem4 36382 iunord 49195 | 
| Copyright terms: Public domain | W3C validator |