| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpii | Structured version Visualization version GIF version | ||
| Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 31-Jul-2012.) |
| Ref | Expression |
|---|---|
| mpii.1 | ⊢ 𝜒 |
| mpii.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpii | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpii.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → 𝜒) |
| 3 | mpii.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: intmin 4944 dfiin2g 5008 ssorduni 7773 sucexeloniOLD 7804 suceloniOLD 7806 lublecllem 18370 irredmul 20389 opnneiid 23064 isufil2 23846 mdbr3 32278 mdbr4 32279 dmdbr5 32289 filnetlem4 36399 iunord 49540 |
| Copyright terms: Public domain | W3C validator |