Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpii | Structured version Visualization version GIF version |
Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 31-Jul-2012.) |
Ref | Expression |
---|---|
mpii.1 | ⊢ 𝜒 |
mpii.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpii | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpii.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → 𝜒) |
3 | mpii.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: intmin 4899 dfiin2g 4962 ssorduni 7629 sucexeloni 7658 suceloniOLD 7660 lublecllem 18078 irredmul 19951 opnneiid 22277 isufil2 23059 mdbr3 30659 mdbr4 30660 dmdbr5 30670 filnetlem4 34570 iunord 46382 |
Copyright terms: Public domain | W3C validator |