Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpdi | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
mpdi.1 | ⊢ (𝜓 → 𝜒) |
mpdi.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdi.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | mpdi.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpii 46 pm2.43d 53 impt 178 sbcimdvOLD 3787 bropfvvvv 7903 wfrlem12OLD 8122 tfrlem9 8187 axcc2lem 10123 axdc3lem4 10140 fpwwe2lem7 10324 tskcard 10468 nqereu 10616 lbzbi 12605 fleqceilz 13502 ndvdsadd 16047 gcdneg 16157 ulmcaulem 25458 wlkiswwlks1 28133 elwspths2on 28226 relowlpssretop 35462 poimirlem18 35722 heicant 35739 brabg2 35801 neificl 35838 el1fzopredsuc 44705 |
Copyright terms: Public domain | W3C validator |