| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdi | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| mpdi.1 | ⊢ (𝜓 → 𝜒) |
| mpdi.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdi.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpdi.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpii 46 pm2.43d 53 impt 178 bropfvvvv 8071 tfrlem9 8353 axcc2lem 10389 axdc3lem4 10406 fpwwe2lem7 10590 tskcard 10734 nqereu 10882 lbzbi 12895 fleqceilz 13816 ndvdsadd 16380 gcdneg 16492 ulmcaulem 26303 wlkiswwlks1 29797 elwspths2on 29890 relowlpssretop 37352 poimirlem18 37632 heicant 37649 brabg2 37711 neificl 37747 el1fzopredsuc 47326 isubgr3stgrlem3 47967 |
| Copyright terms: Public domain | W3C validator |