Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpdi | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
mpdi.1 | ⊢ (𝜓 → 𝜒) |
mpdi.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdi.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | mpdi.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpii 46 pm2.43d 53 impt 178 sbcimdvOLD 3791 bropfvvvv 7932 wfrlem12OLD 8151 tfrlem9 8216 axcc2lem 10192 axdc3lem4 10209 fpwwe2lem7 10393 tskcard 10537 nqereu 10685 lbzbi 12676 fleqceilz 13574 ndvdsadd 16119 gcdneg 16229 ulmcaulem 25553 wlkiswwlks1 28232 elwspths2on 28325 relowlpssretop 35535 poimirlem18 35795 heicant 35812 brabg2 35874 neificl 35911 el1fzopredsuc 44817 |
Copyright terms: Public domain | W3C validator |