| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdi | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| mpdi.1 | ⊢ (𝜓 → 𝜒) |
| mpdi.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdi.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpdi.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpii 46 pm2.43d 53 impt 178 bropfvvvv 8022 tfrlem9 8304 axcc2lem 10324 axdc3lem4 10341 fpwwe2lem7 10525 tskcard 10669 nqereu 10817 lbzbi 12831 fleqceilz 13755 ndvdsadd 16318 gcdneg 16430 ulmcaulem 26328 wlkiswwlks1 29843 elwspths2on 29936 relowlpssretop 37397 poimirlem18 37677 heicant 37694 brabg2 37756 neificl 37792 el1fzopredsuc 47355 isubgr3stgrlem3 47998 |
| Copyright terms: Public domain | W3C validator |