| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdi | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
| Ref | Expression |
|---|---|
| mpdi.1 | ⊢ (𝜓 → 𝜒) |
| mpdi.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdi.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpdi.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpii 46 pm2.43d 53 impt 178 bropfvvvv 8028 tfrlem9 8310 axcc2lem 10334 axdc3lem4 10351 fpwwe2lem7 10535 tskcard 10679 nqereu 10827 lbzbi 12836 fleqceilz 13760 ndvdsadd 16323 gcdneg 16435 ulmcaulem 26331 wlkiswwlks1 29847 elwspths2on 29942 elwspths2onw 29943 relowlpssretop 37429 poimirlem18 37699 heicant 37716 brabg2 37778 neificl 37814 el1fzopredsuc 47450 isubgr3stgrlem3 48093 |
| Copyright terms: Public domain | W3C validator |