![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdi | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005.) (Proof shortened by Mel L. O'Cat, 15-Jan-2008.) |
Ref | Expression |
---|---|
mpdi.1 | ⊢ (𝜓 → 𝜒) |
mpdi.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdi.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | mpdi.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpii 46 pm2.43d 53 impt 178 sbcimdvOLD 3866 bropfvvvv 8116 wfrlem12OLD 8359 tfrlem9 8424 axcc2lem 10474 axdc3lem4 10491 fpwwe2lem7 10675 tskcard 10819 nqereu 10967 lbzbi 12976 fleqceilz 13891 ndvdsadd 16444 gcdneg 16556 ulmcaulem 26452 wlkiswwlks1 29897 elwspths2on 29990 relowlpssretop 37347 poimirlem18 37625 heicant 37642 brabg2 37704 neificl 37740 el1fzopredsuc 47275 isubgr3stgrlem3 47871 |
Copyright terms: Public domain | W3C validator |