Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunord Structured version   Visualization version   GIF version

Theorem iunord 43310
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7246, but does not use it directly, since ssorduni 7246 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.)
Assertion
Ref Expression
iunord (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunord
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordtr 5977 . . . 4 (Ord 𝐵 → Tr 𝐵)
21ralimi 3161 . . 3 (∀𝑥𝐴 Ord 𝐵 → ∀𝑥𝐴 Tr 𝐵)
3 triun 4988 . . 3 (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
42, 3syl 17 . 2 (∀𝑥𝐴 Ord 𝐵 → Tr 𝑥𝐴 𝐵)
5 eliun 4744 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
6 nfra1 3150 . . . . 5 𝑥𝑥𝐴 Ord 𝐵
7 nfv 2013 . . . . 5 𝑥 𝑦 ∈ On
8 rsp 3138 . . . . . 6 (∀𝑥𝐴 Ord 𝐵 → (𝑥𝐴 → Ord 𝐵))
9 ordelon 5987 . . . . . . 7 ((Ord 𝐵𝑦𝐵) → 𝑦 ∈ On)
109ex 403 . . . . . 6 (Ord 𝐵 → (𝑦𝐵𝑦 ∈ On))
118, 10syl6 35 . . . . 5 (∀𝑥𝐴 Ord 𝐵 → (𝑥𝐴 → (𝑦𝐵𝑦 ∈ On)))
126, 7, 11rexlimd 3235 . . . 4 (∀𝑥𝐴 Ord 𝐵 → (∃𝑥𝐴 𝑦𝐵𝑦 ∈ On))
135, 12syl5bi 234 . . 3 (∀𝑥𝐴 Ord 𝐵 → (𝑦 𝑥𝐴 𝐵𝑦 ∈ On))
1413ssrdv 3833 . 2 (∀𝑥𝐴 Ord 𝐵 𝑥𝐴 𝐵 ⊆ On)
15 ordon 7244 . . 3 Ord On
16 trssord 5980 . . . 4 ((Tr 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ On ∧ Ord On) → Ord 𝑥𝐴 𝐵)
17163exp 1152 . . 3 (Tr 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵 ⊆ On → (Ord On → Ord 𝑥𝐴 𝐵)))
1815, 17mpii 46 . 2 (Tr 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵 ⊆ On → Ord 𝑥𝐴 𝐵))
194, 14, 18sylc 65 1 (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2164  wral 3117  wrex 3118  wss 3798   ciun 4740  Tr wtr 4975  Ord word 5962  Oncon0 5963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-tr 4976  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-ord 5966  df-on 5967
This theorem is referenced by:  iunordi  43311
  Copyright terms: Public domain W3C validator