![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunord | Structured version Visualization version GIF version |
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7797, but does not use it directly, since ssorduni 7797 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.) |
Ref | Expression |
---|---|
iunord | ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6399 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
2 | 1 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → ∀𝑥 ∈ 𝐴 Tr 𝐵) |
3 | triun 5279 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
5 | eliun 4999 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
6 | nfra1 3281 | . . . . 5 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 Ord 𝐵 | |
7 | nfv 1911 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ On | |
8 | rsp 3244 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑥 ∈ 𝐴 → Ord 𝐵)) | |
9 | ordelon 6409 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) | |
10 | 9 | ex 412 | . . . . . 6 ⊢ (Ord 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
11 | 8, 10 | syl6 35 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On))) |
12 | 6, 7, 11 | rexlimd 3263 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
13 | 5, 12 | biimtrid 242 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ On)) |
14 | 13 | ssrdv 4000 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On) |
15 | ordon 7795 | . . 3 ⊢ Ord On | |
16 | trssord 6402 | . . . 4 ⊢ ((Tr ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On ∧ Ord On) → Ord ∪ 𝑥 ∈ 𝐴 𝐵) | |
17 | 16 | 3exp 1118 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → (Ord On → Ord ∪ 𝑥 ∈ 𝐴 𝐵))) |
18 | 15, 17 | mpii 46 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → Ord ∪ 𝑥 ∈ 𝐴 𝐵)) |
19 | 4, 14, 18 | sylc 65 | 1 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 ∪ ciun 4995 Tr wtr 5264 Ord word 6384 Oncon0 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 |
This theorem is referenced by: iunordi 48907 |
Copyright terms: Public domain | W3C validator |