| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunord | Structured version Visualization version GIF version | ||
| Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7735, but does not use it directly, since ssorduni 7735 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.) |
| Ref | Expression |
|---|---|
| iunord | ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6334 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 2 | 1 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → ∀𝑥 ∈ 𝐴 Tr 𝐵) |
| 3 | triun 5224 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
| 5 | eliun 4955 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 6 | nfra1 3259 | . . . . 5 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 Ord 𝐵 | |
| 7 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ On | |
| 8 | rsp 3223 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑥 ∈ 𝐴 → Ord 𝐵)) | |
| 9 | ordelon 6344 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) | |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (Ord 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
| 11 | 8, 10 | syl6 35 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On))) |
| 12 | 6, 7, 11 | rexlimd 3242 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
| 13 | 5, 12 | biimtrid 242 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ On)) |
| 14 | 13 | ssrdv 3949 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On) |
| 15 | ordon 7733 | . . 3 ⊢ Ord On | |
| 16 | trssord 6337 | . . . 4 ⊢ ((Tr ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On ∧ Ord On) → Ord ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 17 | 16 | 3exp 1119 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → (Ord On → Ord ∪ 𝑥 ∈ 𝐴 𝐵))) |
| 18 | 15, 17 | mpii 46 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → Ord ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 19 | 4, 14, 18 | sylc 65 | 1 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∪ ciun 4951 Tr wtr 5209 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: iunordi 49660 |
| Copyright terms: Public domain | W3C validator |