Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunord Structured version   Visualization version   GIF version

Theorem iunord 46422
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7649, but does not use it directly, since ssorduni 7649 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.)
Assertion
Ref Expression
iunord (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunord
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordtr 6284 . . . 4 (Ord 𝐵 → Tr 𝐵)
21ralimi 3080 . . 3 (∀𝑥𝐴 Ord 𝐵 → ∀𝑥𝐴 Tr 𝐵)
3 triun 5207 . . 3 (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
42, 3syl 17 . 2 (∀𝑥𝐴 Ord 𝐵 → Tr 𝑥𝐴 𝐵)
5 eliun 4931 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
6 nfra1 3238 . . . . 5 𝑥𝑥𝐴 Ord 𝐵
7 nfv 1913 . . . . 5 𝑥 𝑦 ∈ On
8 rsp 3225 . . . . . 6 (∀𝑥𝐴 Ord 𝐵 → (𝑥𝐴 → Ord 𝐵))
9 ordelon 6294 . . . . . . 7 ((Ord 𝐵𝑦𝐵) → 𝑦 ∈ On)
109ex 412 . . . . . 6 (Ord 𝐵 → (𝑦𝐵𝑦 ∈ On))
118, 10syl6 35 . . . . 5 (∀𝑥𝐴 Ord 𝐵 → (𝑥𝐴 → (𝑦𝐵𝑦 ∈ On)))
126, 7, 11rexlimd 3278 . . . 4 (∀𝑥𝐴 Ord 𝐵 → (∃𝑥𝐴 𝑦𝐵𝑦 ∈ On))
135, 12syl5bi 241 . . 3 (∀𝑥𝐴 Ord 𝐵 → (𝑦 𝑥𝐴 𝐵𝑦 ∈ On))
1413ssrdv 3929 . 2 (∀𝑥𝐴 Ord 𝐵 𝑥𝐴 𝐵 ⊆ On)
15 ordon 7647 . . 3 Ord On
16 trssord 6287 . . . 4 ((Tr 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ On ∧ Ord On) → Ord 𝑥𝐴 𝐵)
17163exp 1117 . . 3 (Tr 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵 ⊆ On → (Ord On → Ord 𝑥𝐴 𝐵)))
1815, 17mpii 46 . 2 (Tr 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵 ⊆ On → Ord 𝑥𝐴 𝐵))
194, 14, 18sylc 65 1 (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2101  wral 3059  wrex 3068  wss 3889   ciun 4927  Tr wtr 5194  Ord word 6269  Oncon0 6270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-tr 5195  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-ord 6273  df-on 6274
This theorem is referenced by:  iunordi  46423
  Copyright terms: Public domain W3C validator