| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunord | Structured version Visualization version GIF version | ||
| Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7773, but does not use it directly, since ssorduni 7773 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.) |
| Ref | Expression |
|---|---|
| iunord | ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6366 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 2 | 1 | ralimi 3073 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → ∀𝑥 ∈ 𝐴 Tr 𝐵) |
| 3 | triun 5244 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
| 5 | eliun 4971 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 6 | nfra1 3266 | . . . . 5 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 Ord 𝐵 | |
| 7 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ On | |
| 8 | rsp 3230 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑥 ∈ 𝐴 → Ord 𝐵)) | |
| 9 | ordelon 6376 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) | |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (Ord 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
| 11 | 8, 10 | syl6 35 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On))) |
| 12 | 6, 7, 11 | rexlimd 3249 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
| 13 | 5, 12 | biimtrid 242 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ On)) |
| 14 | 13 | ssrdv 3964 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On) |
| 15 | ordon 7771 | . . 3 ⊢ Ord On | |
| 16 | trssord 6369 | . . . 4 ⊢ ((Tr ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On ∧ Ord On) → Ord ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 17 | 16 | 3exp 1119 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → (Ord On → Ord ∪ 𝑥 ∈ 𝐴 𝐵))) |
| 18 | 15, 17 | mpii 46 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → Ord ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 19 | 4, 14, 18 | sylc 65 | 1 ⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∪ ciun 4967 Tr wtr 5229 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: iunordi 49541 |
| Copyright terms: Public domain | W3C validator |