MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suceloniOLD Structured version   Visualization version   GIF version

Theorem suceloniOLD 7812
Description: Obsolete version of onsuc 7811 as of 30-Nov-2024. (Contributed by NM, 6-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suceloniOLD (𝐴 ∈ On → suc 𝐴 ∈ On)

Proof of Theorem suceloniOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onelss 6406 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
2 velsn 4640 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 eqimss 4031 . . . . . . . . . 10 (𝑥 = 𝐴𝑥𝐴)
42, 3sylbi 216 . . . . . . . . 9 (𝑥 ∈ {𝐴} → 𝑥𝐴)
54a1i 11 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥𝐴))
61, 5orim12d 962 . . . . . . 7 (𝐴 ∈ On → ((𝑥𝐴𝑥 ∈ {𝐴}) → (𝑥𝐴𝑥𝐴)))
7 df-suc 6370 . . . . . . . . 9 suc 𝐴 = (𝐴 ∪ {𝐴})
87eleq2i 2817 . . . . . . . 8 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
9 elun 4141 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
108, 9bitr2i 275 . . . . . . 7 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴)
11 oridm 902 . . . . . . 7 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
126, 10, 113imtr3g 294 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥𝐴))
13 sssucid 6444 . . . . . 6 𝐴 ⊆ suc 𝐴
14 sstr2 3979 . . . . . 6 (𝑥𝐴 → (𝐴 ⊆ suc 𝐴𝑥 ⊆ suc 𝐴))
1512, 13, 14syl6mpi 67 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴))
1615ralrimiv 3135 . . . 4 (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
17 dftr3 5266 . . . 4 (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
1816, 17sylibr 233 . . 3 (𝐴 ∈ On → Tr suc 𝐴)
19 onss 7784 . . . . 5 (𝐴 ∈ On → 𝐴 ⊆ On)
20 snssi 4807 . . . . 5 (𝐴 ∈ On → {𝐴} ⊆ On)
2119, 20unssd 4180 . . . 4 (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On)
227, 21eqsstrid 4021 . . 3 (𝐴 ∈ On → suc 𝐴 ⊆ On)
23 ordon 7776 . . . 4 Ord On
24 trssord 6381 . . . . 5 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
25243exp 1116 . . . 4 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴)))
2623, 25mpii 46 . . 3 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴))
2718, 22, 26sylc 65 . 2 (𝐴 ∈ On → Ord suc 𝐴)
28 sucexg 7805 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ V)
29 elong 6372 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3028, 29syl 17 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3127, 30mpbird 256 1 (𝐴 ∈ On → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463  cun 3938  wss 3940  {csn 4624  Tr wtr 5260  Ord word 6363  Oncon0 6364  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-tr 5261  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6367  df-on 6368  df-suc 6370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator