| Step | Hyp | Ref
| Expression |
| 1 | | onelss 6399 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
| 2 | | velsn 4622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 3 | | eqimss 4022 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) |
| 4 | 2, 3 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴) |
| 5 | 4 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴)) |
| 6 | 1, 5 | orim12d 966 |
. . . . . . 7
⊢ (𝐴 ∈ On → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) → (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴))) |
| 7 | | df-suc 6363 |
. . . . . . . . 9
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| 8 | 7 | eleq2i 2827 |
. . . . . . . 8
⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) |
| 9 | | elun 4133 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) |
| 10 | 8, 9 | bitr2i 276 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴) |
| 11 | | oridm 904 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴) ↔ 𝑥 ⊆ 𝐴) |
| 12 | 6, 10, 11 | 3imtr3g 295 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
| 13 | | sssucid 6439 |
. . . . . 6
⊢ 𝐴 ⊆ suc 𝐴 |
| 14 | | sstr2 3970 |
. . . . . 6
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) |
| 15 | 12, 13, 14 | syl6mpi 67 |
. . . . 5
⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) |
| 16 | 15 | ralrimiv 3132 |
. . . 4
⊢ (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) |
| 17 | | dftr3 5240 |
. . . 4
⊢ (Tr suc
𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) |
| 18 | 16, 17 | sylibr 234 |
. . 3
⊢ (𝐴 ∈ On → Tr suc 𝐴) |
| 19 | | onss 7784 |
. . . . 5
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 20 | | snssi 4789 |
. . . . 5
⊢ (𝐴 ∈ On → {𝐴} ⊆ On) |
| 21 | 19, 20 | unssd 4172 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On) |
| 22 | 7, 21 | eqsstrid 4002 |
. . 3
⊢ (𝐴 ∈ On → suc 𝐴 ⊆ On) |
| 23 | | ordon 7776 |
. . . 4
⊢ Ord
On |
| 24 | | trssord 6374 |
. . . . 5
⊢ ((Tr suc
𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) →
Ord suc 𝐴) |
| 25 | 24 | 3exp 1119 |
. . . 4
⊢ (Tr suc
𝐴 → (suc 𝐴 ⊆ On → (Ord On
→ Ord suc 𝐴))) |
| 26 | 23, 25 | mpii 46 |
. . 3
⊢ (Tr suc
𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴)) |
| 27 | 18, 22, 26 | sylc 65 |
. 2
⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 28 | | sucexg 7804 |
. . 3
⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) |
| 29 | | elong 6365 |
. . 3
⊢ (suc
𝐴 ∈ V → (suc
𝐴 ∈ On ↔ Ord suc
𝐴)) |
| 30 | 28, 29 | syl 17 |
. 2
⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 31 | 27, 30 | mpbird 257 |
1
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |