MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suceloniOLD Structured version   Visualization version   GIF version

Theorem suceloniOLD 7796
Description: Obsolete version of onsuc 7795 as of 30-Nov-2024. (Contributed by NM, 6-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suceloniOLD (𝐴 ∈ On → suc 𝐴 ∈ On)

Proof of Theorem suceloniOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onelss 6403 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
2 velsn 4643 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 eqimss 4039 . . . . . . . . . 10 (𝑥 = 𝐴𝑥𝐴)
42, 3sylbi 216 . . . . . . . . 9 (𝑥 ∈ {𝐴} → 𝑥𝐴)
54a1i 11 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥𝐴))
61, 5orim12d 963 . . . . . . 7 (𝐴 ∈ On → ((𝑥𝐴𝑥 ∈ {𝐴}) → (𝑥𝐴𝑥𝐴)))
7 df-suc 6367 . . . . . . . . 9 suc 𝐴 = (𝐴 ∪ {𝐴})
87eleq2i 2825 . . . . . . . 8 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
9 elun 4147 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
108, 9bitr2i 275 . . . . . . 7 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴)
11 oridm 903 . . . . . . 7 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
126, 10, 113imtr3g 294 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥𝐴))
13 sssucid 6441 . . . . . 6 𝐴 ⊆ suc 𝐴
14 sstr2 3988 . . . . . 6 (𝑥𝐴 → (𝐴 ⊆ suc 𝐴𝑥 ⊆ suc 𝐴))
1512, 13, 14syl6mpi 67 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴))
1615ralrimiv 3145 . . . 4 (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
17 dftr3 5270 . . . 4 (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
1816, 17sylibr 233 . . 3 (𝐴 ∈ On → Tr suc 𝐴)
19 onss 7768 . . . . 5 (𝐴 ∈ On → 𝐴 ⊆ On)
20 snssi 4810 . . . . 5 (𝐴 ∈ On → {𝐴} ⊆ On)
2119, 20unssd 4185 . . . 4 (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On)
227, 21eqsstrid 4029 . . 3 (𝐴 ∈ On → suc 𝐴 ⊆ On)
23 ordon 7760 . . . 4 Ord On
24 trssord 6378 . . . . 5 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
25243exp 1119 . . . 4 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴)))
2623, 25mpii 46 . . 3 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴))
2718, 22, 26sylc 65 . 2 (𝐴 ∈ On → Ord suc 𝐴)
28 sucexg 7789 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ V)
29 elong 6369 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3028, 29syl 17 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3127, 30mpbird 256 1 (𝐴 ∈ On → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  cun 3945  wss 3947  {csn 4627  Tr wtr 5264  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator