MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin Structured version   Visualization version   GIF version

Theorem intmin 4932
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem intmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . 5 𝑦 ∈ V
21elintrab 4924 . . . 4 (𝑦 {𝑥𝐵𝐴𝑥} ↔ ∀𝑥𝐵 (𝐴𝑥𝑦𝑥))
3 ssid 3969 . . . . 5 𝐴𝐴
4 sseq2 3973 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
5 eleq2 2817 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
64, 5imbi12d 344 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥𝑦𝑥) ↔ (𝐴𝐴𝑦𝐴)))
76rspcv 3584 . . . . 5 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → (𝐴𝐴𝑦𝐴)))
83, 7mpii 46 . . . 4 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → 𝑦𝐴))
92, 8biimtrid 242 . . 3 (𝐴𝐵 → (𝑦 {𝑥𝐵𝐴𝑥} → 𝑦𝐴))
109ssrdv 3952 . 2 (𝐴𝐵 {𝑥𝐵𝐴𝑥} ⊆ 𝐴)
11 ssintub 4930 . . 3 𝐴 {𝑥𝐵𝐴𝑥}
1211a1i 11 . 2 (𝐴𝐵𝐴 {𝑥𝐵𝐴𝑥})
1310, 12eqssd 3964 1 (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914   cint 4910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-ss 3931  df-int 4911
This theorem is referenced by:  intmin2  4939  ordintdif  6383  uniordint  7777  onsucmin  7796  naddrid  8647  naddasslem1  8658  naddasslem2  8659  rankonidlem  9781  rankval4  9820  harsucnn  9951  mrcid  17574  lspid  20888  aspid  21784  cldcls  22929  spanid  31276  chsupid  31341  fldgenidfld  33267  igenidl2  38059  pclidN  39890  diaocN  41119  onuniintrab  43215  topclat  48986  toplatlub  48988  toplatjoin  48990
  Copyright terms: Public domain W3C validator