MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin Structured version   Visualization version   GIF version

Theorem intmin 4944
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem intmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3463 . . . . 5 𝑦 ∈ V
21elintrab 4936 . . . 4 (𝑦 {𝑥𝐵𝐴𝑥} ↔ ∀𝑥𝐵 (𝐴𝑥𝑦𝑥))
3 ssid 3981 . . . . 5 𝐴𝐴
4 sseq2 3985 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
5 eleq2 2823 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
64, 5imbi12d 344 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥𝑦𝑥) ↔ (𝐴𝐴𝑦𝐴)))
76rspcv 3597 . . . . 5 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → (𝐴𝐴𝑦𝐴)))
83, 7mpii 46 . . . 4 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → 𝑦𝐴))
92, 8biimtrid 242 . . 3 (𝐴𝐵 → (𝑦 {𝑥𝐵𝐴𝑥} → 𝑦𝐴))
109ssrdv 3964 . 2 (𝐴𝐵 {𝑥𝐵𝐴𝑥} ⊆ 𝐴)
11 ssintub 4942 . . 3 𝐴 {𝑥𝐵𝐴𝑥}
1211a1i 11 . 2 (𝐴𝐵𝐴 {𝑥𝐵𝐴𝑥})
1310, 12eqssd 3976 1 (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926   cint 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-ss 3943  df-int 4923
This theorem is referenced by:  intmin2  4951  ordintdif  6403  uniordint  7795  onsucmin  7815  naddrid  8695  naddasslem1  8706  naddasslem2  8707  rankonidlem  9842  rankval4  9881  harsucnn  10012  mrcid  17625  lspid  20939  aspid  21835  cldcls  22980  spanid  31328  chsupid  31393  fldgenidfld  33311  igenidl2  38089  pclidN  39915  diaocN  41144  onuniintrab  43250  topclat  48972  toplatlub  48974  toplatjoin  48976
  Copyright terms: Public domain W3C validator