MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin Structured version   Visualization version   GIF version

Theorem intmin 4879
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem intmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3412 . . . . 5 𝑦 ∈ V
21elintrab 4871 . . . 4 (𝑦 {𝑥𝐵𝐴𝑥} ↔ ∀𝑥𝐵 (𝐴𝑥𝑦𝑥))
3 ssid 3923 . . . . 5 𝐴𝐴
4 sseq2 3927 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
5 eleq2 2826 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
64, 5imbi12d 348 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥𝑦𝑥) ↔ (𝐴𝐴𝑦𝐴)))
76rspcv 3532 . . . . 5 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → (𝐴𝐴𝑦𝐴)))
83, 7mpii 46 . . . 4 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → 𝑦𝐴))
92, 8syl5bi 245 . . 3 (𝐴𝐵 → (𝑦 {𝑥𝐵𝐴𝑥} → 𝑦𝐴))
109ssrdv 3907 . 2 (𝐴𝐵 {𝑥𝐵𝐴𝑥} ⊆ 𝐴)
11 ssintub 4877 . . 3 𝐴 {𝑥𝐵𝐴𝑥}
1211a1i 11 . 2 (𝐴𝐵𝐴 {𝑥𝐵𝐴𝑥})
1310, 12eqssd 3918 1 (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wral 3061  {crab 3065  wss 3866   cint 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-int 4860
This theorem is referenced by:  intmin2  4886  ordintdif  6262  uniordint  7585  onsucmin  7600  rankonidlem  9444  rankval4  9483  harsucnn  9614  mrcid  17116  lspid  20019  aspid  20834  cldcls  21939  spanid  29428  chsupid  29493  naddid1  33573  igenidl2  35960  pclidN  37647  diaocN  38876  topclat  45957  toplatlub  45959  toplatjoin  45961
  Copyright terms: Public domain W3C validator