MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin Structured version   Visualization version   GIF version

Theorem intmin 4921
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem intmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . 5 𝑦 ∈ V
21elintrab 4913 . . . 4 (𝑦 {𝑥𝐵𝐴𝑥} ↔ ∀𝑥𝐵 (𝐴𝑥𝑦𝑥))
3 ssid 3960 . . . . 5 𝐴𝐴
4 sseq2 3964 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
5 eleq2 2817 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
64, 5imbi12d 344 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥𝑦𝑥) ↔ (𝐴𝐴𝑦𝐴)))
76rspcv 3575 . . . . 5 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → (𝐴𝐴𝑦𝐴)))
83, 7mpii 46 . . . 4 (𝐴𝐵 → (∀𝑥𝐵 (𝐴𝑥𝑦𝑥) → 𝑦𝐴))
92, 8biimtrid 242 . . 3 (𝐴𝐵 → (𝑦 {𝑥𝐵𝐴𝑥} → 𝑦𝐴))
109ssrdv 3943 . 2 (𝐴𝐵 {𝑥𝐵𝐴𝑥} ⊆ 𝐴)
11 ssintub 4919 . . 3 𝐴 {𝑥𝐵𝐴𝑥}
1211a1i 11 . 2 (𝐴𝐵𝐴 {𝑥𝐵𝐴𝑥})
1310, 12eqssd 3955 1 (𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-ss 3922  df-int 4900
This theorem is referenced by:  intmin2  4928  ordintdif  6362  uniordint  7741  onsucmin  7760  naddrid  8608  naddasslem1  8619  naddasslem2  8620  rankonidlem  9743  rankval4  9782  harsucnn  9913  mrcid  17537  lspid  20903  aspid  21800  cldcls  22945  spanid  31309  chsupid  31374  fldgenidfld  33266  igenidl2  38044  pclidN  39875  diaocN  41104  onuniintrab  43199  topclat  48983  toplatlub  48985  toplatjoin  48987
  Copyright terms: Public domain W3C validator