| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intmin | Structured version Visualization version GIF version | ||
| Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| intmin | ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | 1 | elintrab 4910 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥)) |
| 3 | ssid 3953 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 4 | sseq2 3957 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐴)) | |
| 5 | eleq2 2822 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)) | |
| 6 | 4, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) ↔ (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
| 7 | 6 | rspcv 3569 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
| 8 | 3, 7 | mpii 46 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴)) |
| 9 | 2, 8 | biimtrid 242 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝑦 ∈ 𝐴)) |
| 10 | 9 | ssrdv 3936 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ⊆ 𝐴) |
| 11 | ssintub 4916 | . . 3 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}) |
| 13 | 10, 12 | eqssd 3948 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-ss 3915 df-int 4898 |
| This theorem is referenced by: intmin2 4925 ordintdif 6362 uniordint 7740 onsucmin 7757 naddrid 8604 naddasslem1 8615 naddasslem2 8616 rankonidlem 9728 rankval4 9767 harsucnn 9898 mrcid 17521 lspid 20917 aspid 21814 cldcls 22958 spanid 31329 chsupid 31394 fldgenidfld 33290 rankval4b 35132 igenidl2 38125 pclidN 40015 diaocN 41244 onuniintrab 43343 topclat 49122 toplatlub 49124 toplatjoin 49126 |
| Copyright terms: Public domain | W3C validator |