MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexeloniOLD Structured version   Visualization version   GIF version

Theorem sucexeloniOLD 7809
Description: Obsolete version of sucexeloni 7808 as of 6-Jan-2025. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sucexeloniOLD ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)

Proof of Theorem sucexeloniOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onelss 6399 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
2 velsn 4622 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 eqimss 4022 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥𝐴)
42, 3sylbi 217 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → 𝑥𝐴)
54a1i 11 . . . . . . . . 9 (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥𝐴))
61, 5orim12d 966 . . . . . . . 8 (𝐴 ∈ On → ((𝑥𝐴𝑥 ∈ {𝐴}) → (𝑥𝐴𝑥𝐴)))
7 df-suc 6363 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
87eleq2i 2827 . . . . . . . . 9 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
9 elun 4133 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
108, 9bitr2i 276 . . . . . . . 8 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴)
11 oridm 904 . . . . . . . 8 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
126, 10, 113imtr3g 295 . . . . . . 7 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥𝐴))
13 sssucid 6439 . . . . . . 7 𝐴 ⊆ suc 𝐴
14 sstr2 3970 . . . . . . 7 (𝑥𝐴 → (𝐴 ⊆ suc 𝐴𝑥 ⊆ suc 𝐴))
1512, 13, 14syl6mpi 67 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴))
1615ralrimiv 3132 . . . . 5 (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
17 dftr3 5240 . . . . 5 (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
1816, 17sylibr 234 . . . 4 (𝐴 ∈ On → Tr suc 𝐴)
19 onss 7784 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ On)
20 snssi 4789 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
2119, 20unssd 4172 . . . . 5 (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On)
227, 21eqsstrid 4002 . . . 4 (𝐴 ∈ On → suc 𝐴 ⊆ On)
23 ordon 7776 . . . . 5 Ord On
24 trssord 6374 . . . . . 6 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
25243exp 1119 . . . . 5 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴)))
2623, 25mpii 46 . . . 4 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴))
2718, 22, 26sylc 65 . . 3 (𝐴 ∈ On → Ord suc 𝐴)
2827adantr 480 . 2 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → Ord suc 𝐴)
29 elong 6365 . . 3 (suc 𝐴𝑉 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3029adantl 481 . 2 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3128, 30mpbird 257 1 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3052  cun 3929  wss 3931  {csn 4606  Tr wtr 5234  Ord word 6356  Oncon0 6357  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator