| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | onelss 6425 | . . . . . . . . 9
⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | 
| 2 |  | velsn 4641 | . . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | 
| 3 |  | eqimss 4041 | . . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | 
| 4 | 2, 3 | sylbi 217 | . . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴) | 
| 5 | 4 | a1i 11 | . . . . . . . . 9
⊢ (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴)) | 
| 6 | 1, 5 | orim12d 966 | . . . . . . . 8
⊢ (𝐴 ∈ On → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) → (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴))) | 
| 7 |  | df-suc 6389 | . . . . . . . . . 10
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | 
| 8 | 7 | eleq2i 2832 | . . . . . . . . 9
⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) | 
| 9 |  | elun 4152 | . . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) | 
| 10 | 8, 9 | bitr2i 276 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴) | 
| 11 |  | oridm 904 | . . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴) ↔ 𝑥 ⊆ 𝐴) | 
| 12 | 6, 10, 11 | 3imtr3g 295 | . . . . . . 7
⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) | 
| 13 |  | sssucid 6463 | . . . . . . 7
⊢ 𝐴 ⊆ suc 𝐴 | 
| 14 |  | sstr2 3989 | . . . . . . 7
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) | 
| 15 | 12, 13, 14 | syl6mpi 67 | . . . . . 6
⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) | 
| 16 | 15 | ralrimiv 3144 | . . . . 5
⊢ (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) | 
| 17 |  | dftr3 5264 | . . . . 5
⊢ (Tr suc
𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) | 
| 18 | 16, 17 | sylibr 234 | . . . 4
⊢ (𝐴 ∈ On → Tr suc 𝐴) | 
| 19 |  | onss 7806 | . . . . . 6
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | 
| 20 |  | snssi 4807 | . . . . . 6
⊢ (𝐴 ∈ On → {𝐴} ⊆ On) | 
| 21 | 19, 20 | unssd 4191 | . . . . 5
⊢ (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On) | 
| 22 | 7, 21 | eqsstrid 4021 | . . . 4
⊢ (𝐴 ∈ On → suc 𝐴 ⊆ On) | 
| 23 |  | ordon 7798 | . . . . 5
⊢ Ord
On | 
| 24 |  | trssord 6400 | . . . . . 6
⊢ ((Tr suc
𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) →
Ord suc 𝐴) | 
| 25 | 24 | 3exp 1119 | . . . . 5
⊢ (Tr suc
𝐴 → (suc 𝐴 ⊆ On → (Ord On
→ Ord suc 𝐴))) | 
| 26 | 23, 25 | mpii 46 | . . . 4
⊢ (Tr suc
𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴)) | 
| 27 | 18, 22, 26 | sylc 65 | . . 3
⊢ (𝐴 ∈ On → Ord suc 𝐴) | 
| 28 | 27 | adantr 480 | . 2
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → Ord suc 𝐴) | 
| 29 |  | elong 6391 | . . 3
⊢ (suc
𝐴 ∈ 𝑉 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | 
| 30 | 29 | adantl 481 | . 2
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | 
| 31 | 28, 30 | mpbird 257 | 1
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) |