MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexeloniOLD Structured version   Visualization version   GIF version

Theorem sucexeloniOLD 7808
Description: Obsolete version of sucexeloni 7807 as of 6-Jan-2025. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sucexeloniOLD ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)

Proof of Theorem sucexeloniOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onelss 6407 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
2 velsn 4641 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 eqimss 4032 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥𝐴)
42, 3sylbi 216 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → 𝑥𝐴)
54a1i 11 . . . . . . . . 9 (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥𝐴))
61, 5orim12d 962 . . . . . . . 8 (𝐴 ∈ On → ((𝑥𝐴𝑥 ∈ {𝐴}) → (𝑥𝐴𝑥𝐴)))
7 df-suc 6371 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
87eleq2i 2817 . . . . . . . . 9 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
9 elun 4142 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
108, 9bitr2i 275 . . . . . . . 8 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴)
11 oridm 902 . . . . . . . 8 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
126, 10, 113imtr3g 294 . . . . . . 7 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥𝐴))
13 sssucid 6445 . . . . . . 7 𝐴 ⊆ suc 𝐴
14 sstr2 3980 . . . . . . 7 (𝑥𝐴 → (𝐴 ⊆ suc 𝐴𝑥 ⊆ suc 𝐴))
1512, 13, 14syl6mpi 67 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴))
1615ralrimiv 3135 . . . . 5 (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
17 dftr3 5267 . . . . 5 (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
1816, 17sylibr 233 . . . 4 (𝐴 ∈ On → Tr suc 𝐴)
19 onss 7782 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ On)
20 snssi 4808 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
2119, 20unssd 4181 . . . . 5 (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On)
227, 21eqsstrid 4022 . . . 4 (𝐴 ∈ On → suc 𝐴 ⊆ On)
23 ordon 7774 . . . . 5 Ord On
24 trssord 6382 . . . . . 6 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
25243exp 1116 . . . . 5 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴)))
2623, 25mpii 46 . . . 4 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴))
2718, 22, 26sylc 65 . . 3 (𝐴 ∈ On → Ord suc 𝐴)
2827adantr 479 . 2 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → Ord suc 𝐴)
29 elong 6373 . . 3 (suc 𝐴𝑉 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3029adantl 480 . 2 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3128, 30mpbird 256 1 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3051  cun 3939  wss 3941  {csn 4625  Tr wtr 5261  Ord word 6364  Oncon0 6365  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-tr 5262  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator