MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil2 Structured version   Visualization version   GIF version

Theorem isufil2 22005
Description: The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isufil2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem isufil2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 22001 . . 3 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 ufilmax 22004 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) → 𝐹 = 𝑓)
323expia 1150 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐹𝑓𝐹 = 𝑓))
43ralrimiva 3113 . . 3 (𝐹 ∈ (UFil‘𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓))
51, 4jca 507 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
6 simpl 474 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → 𝐹 ∈ (Fil‘𝑋))
7 selpw 4324 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
8 simpll 783 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
9 snex 5066 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
10 unexg 7161 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥} ∈ V) → (𝐹 ∪ {𝑥}) ∈ V)
118, 9, 10sylancl 580 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ∈ V)
12 ssfii 8536 . . . . . . . . . . . . . . 15 ((𝐹 ∪ {𝑥}) ∈ V → (𝐹 ∪ {𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥})))
1311, 12syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥})))
14 filsspw 21948 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
1514ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ⊆ 𝒫 𝑋)
167biimpri 219 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋𝑥 ∈ 𝒫 𝑋)
1716ad2antlr 718 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ 𝒫 𝑋)
1817snssd 4496 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → {𝑥} ⊆ 𝒫 𝑋)
1915, 18unssd 3953 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋)
20 ssun2 3941 . . . . . . . . . . . . . . . . . 18 {𝑥} ⊆ (𝐹 ∪ {𝑥})
21 vex 3353 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
2221snnz 4465 . . . . . . . . . . . . . . . . . 18 {𝑥} ≠ ∅
23 ssn0 4140 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐹 ∪ {𝑥}) ∧ {𝑥} ≠ ∅) → (𝐹 ∪ {𝑥}) ≠ ∅)
2420, 22, 23mp2an 683 . . . . . . . . . . . . . . . . 17 (𝐹 ∪ {𝑥}) ≠ ∅
2524a1i 11 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ≠ ∅)
26 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
27 ineq2 3972 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑥 → (𝑦𝑓) = (𝑦𝑥))
2827neeq1d 2996 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑥 → ((𝑦𝑓) ≠ ∅ ↔ (𝑦𝑥) ≠ ∅))
2921, 28ralsn 4381 . . . . . . . . . . . . . . . . . . 19 (∀𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅ ↔ (𝑦𝑥) ≠ ∅)
3029ralbii 3127 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅ ↔ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
3126, 30sylibr 225 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅)
32 filfbas 21945 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
3332ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ∈ (fBas‘𝑋))
34 simplr 785 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥𝑋)
35 inss2 3995 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝑥) ⊆ 𝑥
36 filtop 21952 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
3736adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → 𝑋𝐹)
38 ineq1 3971 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑋 → (𝑦𝑥) = (𝑋𝑥))
3938neeq1d 2996 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑋 → ((𝑦𝑥) ≠ ∅ ↔ (𝑋𝑥) ≠ ∅))
4039rspcva 3460 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝐹 ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝑋𝑥) ≠ ∅)
4137, 40sylan 575 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝑋𝑥) ≠ ∅)
42 ssn0 4140 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑥) ⊆ 𝑥 ∧ (𝑋𝑥) ≠ ∅) → 𝑥 ≠ ∅)
4335, 41, 42sylancr 581 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ≠ ∅)
4436ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑋𝐹)
45 snfbas 21963 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑋𝑥 ≠ ∅ ∧ 𝑋𝐹) → {𝑥} ∈ (fBas‘𝑋))
4634, 43, 44, 45syl3anc 1490 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → {𝑥} ∈ (fBas‘𝑋))
47 fbunfip 21966 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})) ↔ ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅))
4833, 46, 47syl2anc 579 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})) ↔ ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅))
4931, 48mpbird 248 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))
50 fsubbas 21964 . . . . . . . . . . . . . . . . 17 (𝑋𝐹 → ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))))
5144, 50syl 17 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))))
5219, 25, 49, 51mpbir3and 1442 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋))
53 ssfg 21969 . . . . . . . . . . . . . . 15 ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5452, 53syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (fi‘(𝐹 ∪ {𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5513, 54sstrd 3773 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5655unssad 3954 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
57 fgcl 21975 . . . . . . . . . . . . 13 ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) ∈ (Fil‘𝑋))
58 sseq2 3789 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝐹𝑓𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
59 eqeq2 2776 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝐹 = 𝑓𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
6058, 59imbi12d 335 . . . . . . . . . . . . . 14 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → ((𝐹𝑓𝐹 = 𝑓) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6160rspcv 3458 . . . . . . . . . . . . 13 ((𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6252, 57, 613syl 18 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6356, 62mpid 44 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
64 vsnid 4369 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑥}
6520, 64sselii 3760 . . . . . . . . . . . . . 14 𝑥 ∈ (𝐹 ∪ {𝑥})
6665a1i 11 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ (𝐹 ∪ {𝑥}))
6755, 66sseldd 3764 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
68 eleq2 2833 . . . . . . . . . . . 12 (𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝑥𝐹𝑥 ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
6967, 68syl5ibrcom 238 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝑥𝐹))
7063, 69syld 47 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → 𝑥𝐹))
7170impancom 443 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → (∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → 𝑥𝐹))
7271an32s 642 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → 𝑥𝐹))
7372con3d 149 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅))
74 rexnal 3141 . . . . . . . . 9 (∃𝑦𝐹 ¬ (𝑦𝑥) ≠ ∅ ↔ ¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
75 nne 2941 . . . . . . . . . . 11 (¬ (𝑦𝑥) ≠ ∅ ↔ (𝑦𝑥) = ∅)
76 filelss 21949 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
77 reldisj 4183 . . . . . . . . . . . . 13 (𝑦𝑋 → ((𝑦𝑥) = ∅ ↔ 𝑦 ⊆ (𝑋𝑥)))
7876, 77syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → ((𝑦𝑥) = ∅ ↔ 𝑦 ⊆ (𝑋𝑥)))
79 difss 3901 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
80 filss 21950 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹 ∧ (𝑋𝑥) ⊆ 𝑋𝑦 ⊆ (𝑋𝑥))) → (𝑋𝑥) ∈ 𝐹)
81803exp2 1463 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → ((𝑋𝑥) ⊆ 𝑋 → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹))))
8279, 81mpii 46 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹)))
8382imp 395 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹))
8478, 83sylbid 231 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → ((𝑦𝑥) = ∅ → (𝑋𝑥) ∈ 𝐹))
8575, 84syl5bi 233 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → (¬ (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8685rexlimdva 3178 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑦𝐹 ¬ (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8774, 86syl5bir 234 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8887ad2antrr 717 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8973, 88syld 47 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → (𝑋𝑥) ∈ 𝐹))
9089orrd 889 . . . . 5 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
917, 90sylan2b 587 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
9291ralrimiva 3113 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
93 isufil 22000 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
946, 92, 93sylanbrc 578 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → 𝐹 ∈ (UFil‘𝑋))
955, 94impbii 200 1 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cdif 3731  cun 3732  cin 3733  wss 3734  c0 4081  𝒫 cpw 4317  {csn 4336  cfv 6070  (class class class)co 6846  ficfi 8527  fBascfbas 20021  filGencfg 20022  Filcfil 21942  UFilcufil 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-en 8165  df-fin 8168  df-fi 8528  df-fbas 20030  df-fg 20031  df-fil 21943  df-ufil 21998
This theorem is referenced by:  filssufilg  22008  fmufil  22056
  Copyright terms: Public domain W3C validator