MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil2 Structured version   Visualization version   GIF version

Theorem isufil2 22659
Description: The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isufil2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem isufil2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 22655 . . 3 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 ufilmax 22658 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) → 𝐹 = 𝑓)
323expia 1122 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐹𝑓𝐹 = 𝑓))
43ralrimiva 3096 . . 3 (𝐹 ∈ (UFil‘𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓))
51, 4jca 515 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
6 simpl 486 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → 𝐹 ∈ (Fil‘𝑋))
7 velpw 4493 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
8 simpll 767 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
9 snex 5298 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
10 unexg 7490 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥} ∈ V) → (𝐹 ∪ {𝑥}) ∈ V)
118, 9, 10sylancl 589 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ∈ V)
12 ssfii 8956 . . . . . . . . . . . . . . 15 ((𝐹 ∪ {𝑥}) ∈ V → (𝐹 ∪ {𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥})))
1311, 12syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥})))
14 filsspw 22602 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
1514ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ⊆ 𝒫 𝑋)
167biimpri 231 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋𝑥 ∈ 𝒫 𝑋)
1716ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ 𝒫 𝑋)
1817snssd 4697 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → {𝑥} ⊆ 𝒫 𝑋)
1915, 18unssd 4076 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋)
20 ssun2 4063 . . . . . . . . . . . . . . . . . 18 {𝑥} ⊆ (𝐹 ∪ {𝑥})
21 vex 3402 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
2221snnz 4667 . . . . . . . . . . . . . . . . . 18 {𝑥} ≠ ∅
23 ssn0 4289 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐹 ∪ {𝑥}) ∧ {𝑥} ≠ ∅) → (𝐹 ∪ {𝑥}) ≠ ∅)
2420, 22, 23mp2an 692 . . . . . . . . . . . . . . . . 17 (𝐹 ∪ {𝑥}) ≠ ∅
2524a1i 11 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ≠ ∅)
26 simpr 488 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
27 ineq2 4097 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑥 → (𝑦𝑓) = (𝑦𝑥))
2827neeq1d 2993 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑥 → ((𝑦𝑓) ≠ ∅ ↔ (𝑦𝑥) ≠ ∅))
2921, 28ralsn 4572 . . . . . . . . . . . . . . . . . . 19 (∀𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅ ↔ (𝑦𝑥) ≠ ∅)
3029ralbii 3080 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅ ↔ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
3126, 30sylibr 237 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅)
32 filfbas 22599 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
3332ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ∈ (fBas‘𝑋))
34 simplr 769 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥𝑋)
35 inss2 4120 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝑥) ⊆ 𝑥
36 filtop 22606 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
3736adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → 𝑋𝐹)
38 ineq1 4096 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑋 → (𝑦𝑥) = (𝑋𝑥))
3938neeq1d 2993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑋 → ((𝑦𝑥) ≠ ∅ ↔ (𝑋𝑥) ≠ ∅))
4039rspcva 3524 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝐹 ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝑋𝑥) ≠ ∅)
4137, 40sylan 583 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝑋𝑥) ≠ ∅)
42 ssn0 4289 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑥) ⊆ 𝑥 ∧ (𝑋𝑥) ≠ ∅) → 𝑥 ≠ ∅)
4335, 41, 42sylancr 590 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ≠ ∅)
4436ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑋𝐹)
45 snfbas 22617 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑋𝑥 ≠ ∅ ∧ 𝑋𝐹) → {𝑥} ∈ (fBas‘𝑋))
4634, 43, 44, 45syl3anc 1372 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → {𝑥} ∈ (fBas‘𝑋))
47 fbunfip 22620 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})) ↔ ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅))
4833, 46, 47syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})) ↔ ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅))
4931, 48mpbird 260 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))
50 fsubbas 22618 . . . . . . . . . . . . . . . . 17 (𝑋𝐹 → ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))))
5144, 50syl 17 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))))
5219, 25, 49, 51mpbir3and 1343 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋))
53 ssfg 22623 . . . . . . . . . . . . . . 15 ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5452, 53syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (fi‘(𝐹 ∪ {𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5513, 54sstrd 3887 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5655unssad 4077 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
57 fgcl 22629 . . . . . . . . . . . . 13 ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) ∈ (Fil‘𝑋))
58 sseq2 3903 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝐹𝑓𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
59 eqeq2 2750 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝐹 = 𝑓𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
6058, 59imbi12d 348 . . . . . . . . . . . . . 14 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → ((𝐹𝑓𝐹 = 𝑓) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6160rspcv 3521 . . . . . . . . . . . . 13 ((𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6252, 57, 613syl 18 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6356, 62mpid 44 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
64 vsnid 4553 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑥}
6520, 64sselii 3874 . . . . . . . . . . . . . 14 𝑥 ∈ (𝐹 ∪ {𝑥})
6665a1i 11 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ (𝐹 ∪ {𝑥}))
6755, 66sseldd 3878 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
68 eleq2 2821 . . . . . . . . . . . 12 (𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝑥𝐹𝑥 ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
6967, 68syl5ibrcom 250 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝑥𝐹))
7063, 69syld 47 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → 𝑥𝐹))
7170impancom 455 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → (∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → 𝑥𝐹))
7271an32s 652 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → 𝑥𝐹))
7372con3d 155 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅))
74 rexnal 3151 . . . . . . . . 9 (∃𝑦𝐹 ¬ (𝑦𝑥) ≠ ∅ ↔ ¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
75 nne 2938 . . . . . . . . . . 11 (¬ (𝑦𝑥) ≠ ∅ ↔ (𝑦𝑥) = ∅)
76 filelss 22603 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
77 reldisj 4341 . . . . . . . . . . . . 13 (𝑦𝑋 → ((𝑦𝑥) = ∅ ↔ 𝑦 ⊆ (𝑋𝑥)))
7876, 77syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → ((𝑦𝑥) = ∅ ↔ 𝑦 ⊆ (𝑋𝑥)))
79 difss 4022 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
80 filss 22604 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹 ∧ (𝑋𝑥) ⊆ 𝑋𝑦 ⊆ (𝑋𝑥))) → (𝑋𝑥) ∈ 𝐹)
81803exp2 1355 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → ((𝑋𝑥) ⊆ 𝑋 → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹))))
8279, 81mpii 46 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹)))
8382imp 410 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹))
8478, 83sylbid 243 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → ((𝑦𝑥) = ∅ → (𝑋𝑥) ∈ 𝐹))
8575, 84syl5bi 245 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → (¬ (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8685rexlimdva 3194 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑦𝐹 ¬ (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8774, 86syl5bir 246 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8887ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8973, 88syld 47 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → (𝑋𝑥) ∈ 𝐹))
9089orrd 862 . . . . 5 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
917, 90sylan2b 597 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
9291ralrimiva 3096 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
93 isufil 22654 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
946, 92, 93sylanbrc 586 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → 𝐹 ∈ (UFil‘𝑋))
955, 94impbii 212 1 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  Vcvv 3398  cdif 3840  cun 3841  cin 3842  wss 3843  c0 4211  𝒫 cpw 4488  {csn 4516  cfv 6339  (class class class)co 7170  ficfi 8947  fBascfbas 20205  filGencfg 20206  Filcfil 22596  UFilcufil 22650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1o 8131  df-er 8320  df-en 8556  df-fin 8559  df-fi 8948  df-fbas 20214  df-fg 20215  df-fil 22597  df-ufil 22652
This theorem is referenced by:  filssufilg  22662  fmufil  22710
  Copyright terms: Public domain W3C validator