MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredmul Structured version   Visualization version   GIF version

Theorem irredmul 19866
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredmul.b 𝐵 = (Base‘𝑅)
irredmul.u 𝑈 = (Unit‘𝑅)
irredmul.t · = (.r𝑅)
Assertion
Ref Expression
irredmul ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))

Proof of Theorem irredmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredmul.b . . . . 5 𝐵 = (Base‘𝑅)
2 irredmul.u . . . . 5 𝑈 = (Unit‘𝑅)
3 irredn0.i . . . . 5 𝐼 = (Irred‘𝑅)
4 irredmul.t . . . . 5 · = (.r𝑅)
51, 2, 3, 4isirred2 19858 . . . 4 ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈))))
65simp3bi 1145 . . 3 ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)))
7 eqid 2738 . . . 4 (𝑋 · 𝑌) = (𝑋 · 𝑌)
8 oveq1 7262 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2740 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌)))
10 eleq1 2826 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
1110orbi1d 913 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑈𝑦𝑈) ↔ (𝑋𝑈𝑦𝑈)))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈))))
13 oveq2 7263 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2740 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌)))
15 eleq1 2826 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝑈𝑌𝑈))
1615orbi2d 912 . . . . . 6 (𝑦 = 𝑌 → ((𝑋𝑈𝑦𝑈) ↔ (𝑋𝑈𝑌𝑈)))
1714, 16imbi12d 344 . . . . 5 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
1812, 17rspc2v 3562 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
197, 18mpii 46 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → (𝑋𝑈𝑌𝑈)))
206, 19syl5 34 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋𝑈𝑌𝑈)))
21203impia 1115 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Unitcui 19796  Irredcir 19797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-irred 19800
This theorem is referenced by:  prmirredlem  20606
  Copyright terms: Public domain W3C validator