| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irredmul | Structured version Visualization version GIF version | ||
| Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
| irredmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| irredmul.u | ⊢ 𝑈 = (Unit‘𝑅) |
| irredmul.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| irredmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredmul.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | irredmul.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | irredn0.i | . . . . 5 ⊢ 𝐼 = (Irred‘𝑅) | |
| 4 | irredmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isirred2 20330 | . . . 4 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 6 | 5 | simp3bi 1147 | . . 3 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
| 7 | eqid 2729 | . . . 4 ⊢ (𝑋 · 𝑌) = (𝑋 · 𝑌) | |
| 8 | oveq1 7394 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
| 9 | 8 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌))) |
| 10 | eleq1 2816 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
| 11 | 10 | orbi1d 916 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
| 12 | 9, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 13 | oveq2 7395 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 14 | 13 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌))) |
| 15 | eleq1 2816 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | |
| 16 | 15 | orbi2d 915 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
| 17 | 14, 16 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
| 18 | 12, 17 | rspc2v 3599 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
| 19 | 7, 18 | mpii 46 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
| 20 | 6, 19 | syl5 34 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
| 21 | 20 | 3impia 1117 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Unitcui 20264 Irredcir 20265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-irred 20268 |
| This theorem is referenced by: prmirredlem 21382 mxidlirred 33443 irredminply 33706 |
| Copyright terms: Public domain | W3C validator |