![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredmul | Structured version Visualization version GIF version |
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredmul.b | ⊢ 𝐵 = (Base‘𝑅) |
irredmul.u | ⊢ 𝑈 = (Unit‘𝑅) |
irredmul.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
irredmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredmul.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | irredmul.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | irredn0.i | . . . . 5 ⊢ 𝐼 = (Irred‘𝑅) | |
4 | irredmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isirred2 20438 | . . . 4 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
6 | 5 | simp3bi 1146 | . . 3 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
7 | eqid 2735 | . . . 4 ⊢ (𝑋 · 𝑌) = (𝑋 · 𝑌) | |
8 | oveq1 7438 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
9 | 8 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌))) |
10 | eleq1 2827 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
11 | 10 | orbi1d 916 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
12 | 9, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
13 | oveq2 7439 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
14 | 13 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌))) |
15 | eleq1 2827 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | |
16 | 15 | orbi2d 915 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
17 | 14, 16 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
18 | 12, 17 | rspc2v 3633 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
19 | 7, 18 | mpii 46 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
20 | 6, 19 | syl5 34 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
21 | 20 | 3impia 1116 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 Unitcui 20372 Irredcir 20373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-irred 20376 |
This theorem is referenced by: prmirredlem 21501 mxidlirred 33480 irredminply 33722 |
Copyright terms: Public domain | W3C validator |