![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredmul | Structured version Visualization version GIF version |
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredmul.b | ⊢ 𝐵 = (Base‘𝑅) |
irredmul.u | ⊢ 𝑈 = (Unit‘𝑅) |
irredmul.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
irredmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredmul.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | irredmul.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | irredn0.i | . . . . 5 ⊢ 𝐼 = (Irred‘𝑅) | |
4 | irredmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isirred2 19062 | . . . 4 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
6 | 5 | simp3bi 1181 | . . 3 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
7 | eqid 2825 | . . . 4 ⊢ (𝑋 · 𝑌) = (𝑋 · 𝑌) | |
8 | oveq1 6917 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
9 | 8 | eqeq1d 2827 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌))) |
10 | eleq1 2894 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
11 | 10 | orbi1d 945 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
12 | 9, 11 | imbi12d 336 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
13 | oveq2 6918 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
14 | 13 | eqeq1d 2827 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌))) |
15 | eleq1 2894 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | |
16 | 15 | orbi2d 944 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
17 | 14, 16 | imbi12d 336 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
18 | 12, 17 | rspc2v 3539 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
19 | 7, 18 | mpii 46 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
20 | 6, 19 | syl5 34 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
21 | 20 | 3impia 1149 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 878 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 .rcmulr 16313 Unitcui 19000 Irredcir 19001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-irred 19004 |
This theorem is referenced by: prmirredlem 20208 |
Copyright terms: Public domain | W3C validator |