MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredmul Structured version   Visualization version   GIF version

Theorem irredmul 20345
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredmul.b 𝐵 = (Base‘𝑅)
irredmul.u 𝑈 = (Unit‘𝑅)
irredmul.t · = (.r𝑅)
Assertion
Ref Expression
irredmul ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))

Proof of Theorem irredmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredmul.b . . . . 5 𝐵 = (Base‘𝑅)
2 irredmul.u . . . . 5 𝑈 = (Unit‘𝑅)
3 irredn0.i . . . . 5 𝐼 = (Irred‘𝑅)
4 irredmul.t . . . . 5 · = (.r𝑅)
51, 2, 3, 4isirred2 20337 . . . 4 ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈))))
65simp3bi 1147 . . 3 ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)))
7 eqid 2730 . . . 4 (𝑋 · 𝑌) = (𝑋 · 𝑌)
8 oveq1 7397 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2732 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌)))
10 eleq1 2817 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
1110orbi1d 916 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑈𝑦𝑈) ↔ (𝑋𝑈𝑦𝑈)))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈))))
13 oveq2 7398 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2732 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌)))
15 eleq1 2817 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝑈𝑌𝑈))
1615orbi2d 915 . . . . . 6 (𝑦 = 𝑌 → ((𝑋𝑈𝑦𝑈) ↔ (𝑋𝑈𝑌𝑈)))
1714, 16imbi12d 344 . . . . 5 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
1812, 17rspc2v 3602 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
197, 18mpii 46 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → (𝑋𝑈𝑌𝑈)))
206, 19syl5 34 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋𝑈𝑌𝑈)))
21203impia 1117 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  Unitcui 20271  Irredcir 20272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-irred 20275
This theorem is referenced by:  prmirredlem  21389  mxidlirred  33450  irredminply  33713
  Copyright terms: Public domain W3C validator