![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredmul | Structured version Visualization version GIF version |
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredmul.b | ⊢ 𝐵 = (Base‘𝑅) |
irredmul.u | ⊢ 𝑈 = (Unit‘𝑅) |
irredmul.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
irredmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredmul.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | irredmul.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | irredn0.i | . . . . 5 ⊢ 𝐼 = (Irred‘𝑅) | |
4 | irredmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isirred2 20447 | . . . 4 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
6 | 5 | simp3bi 1147 | . . 3 ⊢ ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
7 | eqid 2740 | . . . 4 ⊢ (𝑋 · 𝑌) = (𝑋 · 𝑌) | |
8 | oveq1 7455 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
9 | 8 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌))) |
10 | eleq1 2832 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
11 | 10 | orbi1d 915 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
12 | 9, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
13 | oveq2 7456 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
14 | 13 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌))) |
15 | eleq1 2832 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | |
16 | 15 | orbi2d 914 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) ↔ (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
17 | 14, 16 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
18 | 12, 17 | rspc2v 3646 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)))) |
19 | 7, 18 | mpii 46 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
20 | 6, 19 | syl5 34 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈))) |
21 | 20 | 3impia 1117 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Unitcui 20381 Irredcir 20382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-irred 20385 |
This theorem is referenced by: prmirredlem 21506 mxidlirred 33465 irredminply 33707 |
Copyright terms: Public domain | W3C validator |