Step | Hyp | Ref
| Expression |
1 | | filnet.h |
. . . . 5
⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
2 | | filnet.d |
. . . . 5
⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st
‘𝑥))} |
3 | 1, 2 | filnetlem3 34496 |
. . . 4
⊢ (𝐻 = ∪
∪ 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))) |
4 | 3 | simpri 485 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)) |
5 | 4 | simprd 495 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel) |
6 | | f2ndres 7829 |
. . . . 5
⊢
(2nd ↾ (𝐹 × 𝑋)):(𝐹 × 𝑋)⟶𝑋 |
7 | 4 | simpld 494 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋)) |
8 | | fssres2 6626 |
. . . . 5
⊢
(((2nd ↾ (𝐹 × 𝑋)):(𝐹 × 𝑋)⟶𝑋 ∧ 𝐻 ⊆ (𝐹 × 𝑋)) → (2nd ↾ 𝐻):𝐻⟶𝑋) |
9 | 6, 7, 8 | sylancr 586 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (2nd ↾
𝐻):𝐻⟶𝑋) |
10 | | filtop 22914 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
11 | | xpexg 7578 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋 ∈ 𝐹) → (𝐹 × 𝑋) ∈ V) |
12 | 10, 11 | mpdan 683 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V) |
13 | 12, 7 | ssexd 5243 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V) |
14 | 9, 13 | fexd 7085 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (2nd ↾
𝐻) ∈
V) |
15 | 3 | simpli 483 |
. . . . . . 7
⊢ 𝐻 = ∪
∪ 𝐷 |
16 | | dirdm 18233 |
. . . . . . . 8
⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪
∪ 𝐷) |
17 | 5, 16 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → dom 𝐷 = ∪ ∪ 𝐷) |
18 | 15, 17 | eqtr4id 2798 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐻 = dom 𝐷) |
19 | 18 | feq2d 6570 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ((2nd
↾ 𝐻):𝐻⟶𝑋 ↔ (2nd ↾ 𝐻):dom 𝐷⟶𝑋)) |
20 | 9, 19 | mpbid 231 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (2nd ↾
𝐻):dom 𝐷⟶𝑋) |
21 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ dom 𝐷 = dom 𝐷 |
22 | 21 | tailf 34491 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ DirRel →
(tail‘𝐷):dom 𝐷⟶𝒫 dom 𝐷) |
23 | 5, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → (tail‘𝐷):dom 𝐷⟶𝒫 dom 𝐷) |
24 | 18 | feq2d 6570 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → ((tail‘𝐷):𝐻⟶𝒫 dom 𝐷 ↔ (tail‘𝐷):dom 𝐷⟶𝒫 dom 𝐷)) |
25 | 23, 24 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘𝑋) → (tail‘𝐷):𝐻⟶𝒫 dom 𝐷) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) → (tail‘𝐷):𝐻⟶𝒫 dom 𝐷) |
27 | | ffn 6584 |
. . . . . . . . . 10
⊢
((tail‘𝐷):𝐻⟶𝒫 dom 𝐷 → (tail‘𝐷) Fn 𝐻) |
28 | | imaeq2 5954 |
. . . . . . . . . . . 12
⊢ (𝑑 = ((tail‘𝐷)‘𝑓) → ((2nd ↾ 𝐻) “ 𝑑) = ((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓))) |
29 | 28 | sseq1d 3948 |
. . . . . . . . . . 11
⊢ (𝑑 = ((tail‘𝐷)‘𝑓) → (((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡 ↔ ((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡)) |
30 | 29 | rexrn 6945 |
. . . . . . . . . 10
⊢
((tail‘𝐷) Fn
𝐻 → (∃𝑑 ∈ ran (tail‘𝐷)((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡 ↔ ∃𝑓 ∈ 𝐻 ((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡)) |
31 | 26, 27, 30 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) → (∃𝑑 ∈ ran (tail‘𝐷)((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡 ↔ ∃𝑓 ∈ 𝐻 ((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡)) |
32 | | fo2nd 7825 |
. . . . . . . . . . . . . . 15
⊢
2nd :V–onto→V |
33 | | fofn 6674 |
. . . . . . . . . . . . . . 15
⊢
(2nd :V–onto→V → 2nd Fn V) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
2nd Fn V |
35 | | ssv 3941 |
. . . . . . . . . . . . . 14
⊢ 𝐻 ⊆ V |
36 | | fnssres 6539 |
. . . . . . . . . . . . . 14
⊢
((2nd Fn V ∧ 𝐻 ⊆ V) → (2nd ↾
𝐻) Fn 𝐻) |
37 | 34, 35, 36 | mp2an 688 |
. . . . . . . . . . . . 13
⊢
(2nd ↾ 𝐻) Fn 𝐻 |
38 | | fnfun 6517 |
. . . . . . . . . . . . 13
⊢
((2nd ↾ 𝐻) Fn 𝐻 → Fun (2nd ↾ 𝐻)) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
(2nd ↾ 𝐻) |
40 | 26 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((tail‘𝐷)‘𝑓) ∈ 𝒫 dom 𝐷) |
41 | 40 | elpwid 4541 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((tail‘𝐷)‘𝑓) ⊆ dom 𝐷) |
42 | 18 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → 𝐻 = dom 𝐷) |
43 | 41, 42 | sseqtrrd 3958 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((tail‘𝐷)‘𝑓) ⊆ 𝐻) |
44 | 37 | fndmi 6521 |
. . . . . . . . . . . . 13
⊢ dom
(2nd ↾ 𝐻)
= 𝐻 |
45 | 43, 44 | sseqtrrdi 3968 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((tail‘𝐷)‘𝑓) ⊆ dom (2nd ↾ 𝐻)) |
46 | | funimass4 6816 |
. . . . . . . . . . . 12
⊢ ((Fun
(2nd ↾ 𝐻)
∧ ((tail‘𝐷)‘𝑓) ⊆ dom (2nd ↾ 𝐻)) → (((2nd
↾ 𝐻) “
((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∀𝑑 ∈ ((tail‘𝐷)‘𝑓)((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡)) |
47 | 39, 45, 46 | sylancr 586 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → (((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∀𝑑 ∈ ((tail‘𝐷)‘𝑓)((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡)) |
48 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → 𝐷 ∈ DirRel) |
49 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → 𝑓 ∈ 𝐻) |
50 | 49, 42 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → 𝑓 ∈ dom 𝐷) |
51 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑑 ∈ V |
52 | 51 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → 𝑑 ∈ V) |
53 | 21 | eltail 34490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ DirRel ∧ 𝑓 ∈ dom 𝐷 ∧ 𝑑 ∈ V) → (𝑑 ∈ ((tail‘𝐷)‘𝑓) ↔ 𝑓𝐷𝑑)) |
54 | 48, 50, 52, 53 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → (𝑑 ∈ ((tail‘𝐷)‘𝑓) ↔ 𝑓𝐷𝑑)) |
55 | 49 | biantrurd 532 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → (𝑑 ∈ 𝐻 ↔ (𝑓 ∈ 𝐻 ∧ 𝑑 ∈ 𝐻))) |
56 | 55 | anbi1d 629 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) ↔ ((𝑓 ∈ 𝐻 ∧ 𝑑 ∈ 𝐻) ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)))) |
57 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
58 | 1, 2, 57, 51 | filnetlem1 34494 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓𝐷𝑑 ↔ ((𝑓 ∈ 𝐻 ∧ 𝑑 ∈ 𝐻) ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓))) |
59 | 56, 58 | bitr4di 288 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) ↔ 𝑓𝐷𝑑)) |
60 | 54, 59 | bitr4d 281 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → (𝑑 ∈ ((tail‘𝐷)‘𝑓) ↔ (𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)))) |
61 | 60 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((𝑑 ∈ ((tail‘𝐷)‘𝑓) → ((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡) ↔ ((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) →
((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡))) |
62 | | fvres 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ 𝐻 → ((2nd ↾ 𝐻)‘𝑑) = (2nd ‘𝑑)) |
63 | 62 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ 𝐻 → (((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡 ↔ (2nd ‘𝑑) ∈ 𝑡)) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) →
(((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡 ↔ (2nd ‘𝑑) ∈ 𝑡)) |
65 | 64 | pm5.74i 270 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) →
((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡) ↔ ((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) →
(2nd ‘𝑑)
∈ 𝑡)) |
66 | | impexp 450 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) →
(2nd ‘𝑑)
∈ 𝑡) ↔ (𝑑 ∈ 𝐻 → ((1st ‘𝑑) ⊆ (1st
‘𝑓) →
(2nd ‘𝑑)
∈ 𝑡))) |
67 | 65, 66 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∈ 𝐻 ∧ (1st ‘𝑑) ⊆ (1st
‘𝑓)) →
((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡) ↔ (𝑑 ∈ 𝐻 → ((1st ‘𝑑) ⊆ (1st
‘𝑓) →
(2nd ‘𝑑)
∈ 𝑡))) |
68 | 61, 67 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → ((𝑑 ∈ ((tail‘𝐷)‘𝑓) → ((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡) ↔ (𝑑 ∈ 𝐻 → ((1st ‘𝑑) ⊆ (1st
‘𝑓) →
(2nd ‘𝑑)
∈ 𝑡)))) |
69 | 68 | ralbidv2 3118 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → (∀𝑑 ∈ ((tail‘𝐷)‘𝑓)((2nd ↾ 𝐻)‘𝑑) ∈ 𝑡 ↔ ∀𝑑 ∈ 𝐻 ((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡))) |
70 | 47, 69 | bitrd 278 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑓 ∈ 𝐻) → (((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∀𝑑 ∈ 𝐻 ((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡))) |
71 | 70 | rexbidva 3224 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) → (∃𝑓 ∈ 𝐻 ((2nd ↾ 𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∃𝑓 ∈ 𝐻 ∀𝑑 ∈ 𝐻 ((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡))) |
72 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑘 ∈ V |
73 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑣 ∈ V |
74 | 72, 73 | op1std 7814 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 〈𝑘, 𝑣〉 → (1st ‘𝑑) = 𝑘) |
75 | 74 | sseq1d 3948 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 〈𝑘, 𝑣〉 → ((1st ‘𝑑) ⊆ (1st
‘𝑓) ↔ 𝑘 ⊆ (1st
‘𝑓))) |
76 | 72, 73 | op2ndd 7815 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 〈𝑘, 𝑣〉 → (2nd ‘𝑑) = 𝑣) |
77 | 76 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 〈𝑘, 𝑣〉 → ((2nd ‘𝑑) ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) |
78 | 75, 77 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 〈𝑘, 𝑣〉 → (((1st ‘𝑑) ⊆ (1st
‘𝑓) →
(2nd ‘𝑑)
∈ 𝑡) ↔ (𝑘 ⊆ (1st
‘𝑓) → 𝑣 ∈ 𝑡))) |
79 | 78 | raliunxp 5737 |
. . . . . . . . . . . . 13
⊢
(∀𝑑 ∈
∪ 𝑘 ∈ 𝐹 ({𝑘} × 𝑘)((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡) ↔ ∀𝑘 ∈ 𝐹 ∀𝑣 ∈ 𝑘 (𝑘 ⊆ (1st ‘𝑓) → 𝑣 ∈ 𝑡)) |
80 | | sneq 4568 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
81 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → 𝑛 = 𝑘) |
82 | 80, 81 | xpeq12d 5611 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → ({𝑛} × 𝑛) = ({𝑘} × 𝑘)) |
83 | 82 | cbviunv 4966 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) = ∪ 𝑘 ∈ 𝐹 ({𝑘} × 𝑘) |
84 | 1, 83 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝐻 = ∪ 𝑘 ∈ 𝐹 ({𝑘} × 𝑘) |
85 | 84 | raleqi 3337 |
. . . . . . . . . . . . 13
⊢
(∀𝑑 ∈
𝐻 ((1st
‘𝑑) ⊆
(1st ‘𝑓)
→ (2nd ‘𝑑) ∈ 𝑡) ↔ ∀𝑑 ∈ ∪
𝑘 ∈ 𝐹 ({𝑘} × 𝑘)((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡)) |
86 | | dfss3 3905 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ⊆ 𝑡 ↔ ∀𝑣 ∈ 𝑘 𝑣 ∈ 𝑡) |
87 | 86 | imbi2i 335 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ⊆ (1st
‘𝑓) → 𝑘 ⊆ 𝑡) ↔ (𝑘 ⊆ (1st ‘𝑓) → ∀𝑣 ∈ 𝑘 𝑣 ∈ 𝑡)) |
88 | | r19.21v 3100 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑣 ∈
𝑘 (𝑘 ⊆ (1st ‘𝑓) → 𝑣 ∈ 𝑡) ↔ (𝑘 ⊆ (1st ‘𝑓) → ∀𝑣 ∈ 𝑘 𝑣 ∈ 𝑡)) |
89 | 87, 88 | bitr4i 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ⊆ (1st
‘𝑓) → 𝑘 ⊆ 𝑡) ↔ ∀𝑣 ∈ 𝑘 (𝑘 ⊆ (1st ‘𝑓) → 𝑣 ∈ 𝑡)) |
90 | 89 | ralbii 3090 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡) ↔ ∀𝑘 ∈ 𝐹 ∀𝑣 ∈ 𝑘 (𝑘 ⊆ (1st ‘𝑓) → 𝑣 ∈ 𝑡)) |
91 | 79, 85, 90 | 3bitr4i 302 |
. . . . . . . . . . . 12
⊢
(∀𝑑 ∈
𝐻 ((1st
‘𝑑) ⊆
(1st ‘𝑓)
→ (2nd ‘𝑑) ∈ 𝑡) ↔ ∀𝑘 ∈ 𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡)) |
92 | 91 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑓 ∈
𝐻 ∀𝑑 ∈ 𝐻 ((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡) ↔ ∃𝑓 ∈ 𝐻 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡)) |
93 | 1 | rexeqi 3338 |
. . . . . . . . . . 11
⊢
(∃𝑓 ∈
𝐻 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡) ↔ ∃𝑓 ∈ ∪
𝑛 ∈ 𝐹 ({𝑛} × 𝑛)∀𝑘 ∈ 𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡)) |
94 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑛 ∈ V |
95 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V |
96 | 94, 95 | op1std 7814 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 〈𝑛, 𝑚〉 → (1st ‘𝑓) = 𝑛) |
97 | 96 | sseq2d 3949 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 〈𝑛, 𝑚〉 → (𝑘 ⊆ (1st ‘𝑓) ↔ 𝑘 ⊆ 𝑛)) |
98 | 97 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 〈𝑛, 𝑚〉 → ((𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡) ↔ (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡))) |
99 | 98 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑓 = 〈𝑛, 𝑚〉 → (∀𝑘 ∈ 𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡) ↔ ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡))) |
100 | 99 | rexiunxp 5738 |
. . . . . . . . . . 11
⊢
(∃𝑓 ∈
∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)∀𝑘 ∈ 𝐹 (𝑘 ⊆ (1st ‘𝑓) → 𝑘 ⊆ 𝑡) ↔ ∃𝑛 ∈ 𝐹 ∃𝑚 ∈ 𝑛 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡)) |
101 | 92, 93, 100 | 3bitri 296 |
. . . . . . . . . 10
⊢
(∃𝑓 ∈
𝐻 ∀𝑑 ∈ 𝐻 ((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡) ↔ ∃𝑛 ∈ 𝐹 ∃𝑚 ∈ 𝑛 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡)) |
102 | | fileln0 22909 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ 𝐹) → 𝑛 ≠ ∅) |
103 | 102 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑛 ∈ 𝐹) → 𝑛 ≠ ∅) |
104 | | r19.9rzv 4427 |
. . . . . . . . . . . . 13
⊢ (𝑛 ≠ ∅ →
(∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) ↔ ∃𝑚 ∈ 𝑛 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡))) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑛 ∈ 𝐹) → (∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) ↔ ∃𝑚 ∈ 𝑛 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡))) |
106 | | ssid 3939 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ⊆ 𝑛 |
107 | | sseq1 3942 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → (𝑘 ⊆ 𝑛 ↔ 𝑛 ⊆ 𝑛)) |
108 | | sseq1 3942 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → (𝑘 ⊆ 𝑡 ↔ 𝑛 ⊆ 𝑡)) |
109 | 107, 108 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ((𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) ↔ (𝑛 ⊆ 𝑛 → 𝑛 ⊆ 𝑡))) |
110 | 109 | rspcv 3547 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝐹 → (∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) → (𝑛 ⊆ 𝑛 → 𝑛 ⊆ 𝑡))) |
111 | 106, 110 | mpii 46 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐹 → (∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) → 𝑛 ⊆ 𝑡)) |
112 | 111 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑛 ∈ 𝐹) → (∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) → 𝑛 ⊆ 𝑡)) |
113 | | sstr2 3924 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ⊆ 𝑛 → (𝑛 ⊆ 𝑡 → 𝑘 ⊆ 𝑡)) |
114 | 113 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ⊆ 𝑡 → (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡)) |
115 | 114 | ralrimivw 3108 |
. . . . . . . . . . . . 13
⊢ (𝑛 ⊆ 𝑡 → ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡)) |
116 | 112, 115 | impbid1 224 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑛 ∈ 𝐹) → (∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) ↔ 𝑛 ⊆ 𝑡)) |
117 | 105, 116 | bitr3d 280 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑛 ∈ 𝐹) → (∃𝑚 ∈ 𝑛 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) ↔ 𝑛 ⊆ 𝑡)) |
118 | 117 | rexbidva 3224 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) → (∃𝑛 ∈ 𝐹 ∃𝑚 ∈ 𝑛 ∀𝑘 ∈ 𝐹 (𝑘 ⊆ 𝑛 → 𝑘 ⊆ 𝑡) ↔ ∃𝑛 ∈ 𝐹 𝑛 ⊆ 𝑡)) |
119 | 101, 118 | syl5bb 282 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) → (∃𝑓 ∈ 𝐻 ∀𝑑 ∈ 𝐻 ((1st ‘𝑑) ⊆ (1st ‘𝑓) → (2nd
‘𝑑) ∈ 𝑡) ↔ ∃𝑛 ∈ 𝐹 𝑛 ⊆ 𝑡)) |
120 | 31, 71, 119 | 3bitrd 304 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡 ⊆ 𝑋) → (∃𝑑 ∈ ran (tail‘𝐷)((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡 ↔ ∃𝑛 ∈ 𝐹 𝑛 ⊆ 𝑡)) |
121 | 120 | pm5.32da 578 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑑 ∈ ran (tail‘𝐷)((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑛 ∈ 𝐹 𝑛 ⊆ 𝑡))) |
122 | | filn0 22921 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
123 | 94 | snnz 4709 |
. . . . . . . . . . . . . . . 16
⊢ {𝑛} ≠ ∅ |
124 | 102, 123 | jctil 519 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ 𝐹) → ({𝑛} ≠ ∅ ∧ 𝑛 ≠ ∅)) |
125 | | neanior 3036 |
. . . . . . . . . . . . . . 15
⊢ (({𝑛} ≠ ∅ ∧ 𝑛 ≠ ∅) ↔ ¬
({𝑛} = ∅ ∨ 𝑛 = ∅)) |
126 | 124, 125 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ 𝐹) → ¬ ({𝑛} = ∅ ∨ 𝑛 = ∅)) |
127 | | ss0b 4328 |
. . . . . . . . . . . . . . 15
⊢ (({𝑛} × 𝑛) ⊆ ∅ ↔ ({𝑛} × 𝑛) = ∅) |
128 | | xpeq0 6052 |
. . . . . . . . . . . . . . 15
⊢ (({𝑛} × 𝑛) = ∅ ↔ ({𝑛} = ∅ ∨ 𝑛 = ∅)) |
129 | 127, 128 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (({𝑛} × 𝑛) ⊆ ∅ ↔ ({𝑛} = ∅ ∨ 𝑛 = ∅)) |
130 | 126, 129 | sylnibr 328 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ 𝐹) → ¬ ({𝑛} × 𝑛) ⊆ ∅) |
131 | 130 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑛 ∈ 𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅) |
132 | | r19.2z 4422 |
. . . . . . . . . . . 12
⊢ ((𝐹 ≠ ∅ ∧
∀𝑛 ∈ 𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅) → ∃𝑛 ∈ 𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅) |
133 | 122, 131,
132 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑛 ∈ 𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅) |
134 | | rexnal 3165 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅ ↔ ¬ ∀𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅) |
135 | 133, 134 | sylib 217 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∀𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅) |
136 | 1 | sseq1i 3945 |
. . . . . . . . . . . 12
⊢ (𝐻 ⊆ ∅ ↔ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅) |
137 | | ss0b 4328 |
. . . . . . . . . . . 12
⊢ (𝐻 ⊆ ∅ ↔ 𝐻 = ∅) |
138 | | iunss 4971 |
. . . . . . . . . . . 12
⊢ (∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅ ↔ ∀𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅) |
139 | 136, 137,
138 | 3bitr3i 300 |
. . . . . . . . . . 11
⊢ (𝐻 = ∅ ↔ ∀𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅) |
140 | 139 | necon3abii 2989 |
. . . . . . . . . 10
⊢ (𝐻 ≠ ∅ ↔ ¬
∀𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∅) |
141 | 135, 140 | sylibr 233 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐻 ≠ ∅) |
142 | | dmresi 5950 |
. . . . . . . . . . . 12
⊢ dom ( I
↾ 𝐻) = 𝐻 |
143 | 1, 2 | filnetlem2 34495 |
. . . . . . . . . . . . . 14
⊢ (( I
↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
144 | 143 | simpli 483 |
. . . . . . . . . . . . 13
⊢ ( I
↾ 𝐻) ⊆ 𝐷 |
145 | | dmss 5800 |
. . . . . . . . . . . . 13
⊢ (( I
↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷) |
146 | 144, 145 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ dom ( I
↾ 𝐻) ⊆ dom
𝐷 |
147 | 142, 146 | eqsstrri 3952 |
. . . . . . . . . . 11
⊢ 𝐻 ⊆ dom 𝐷 |
148 | 143 | simpri 485 |
. . . . . . . . . . . . 13
⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
149 | | dmss 5800 |
. . . . . . . . . . . . 13
⊢ (𝐷 ⊆ (𝐻 × 𝐻) → dom 𝐷 ⊆ dom (𝐻 × 𝐻)) |
150 | 148, 149 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ dom 𝐷 ⊆ dom (𝐻 × 𝐻) |
151 | | dmxpid 5828 |
. . . . . . . . . . . 12
⊢ dom
(𝐻 × 𝐻) = 𝐻 |
152 | 150, 151 | sseqtri 3953 |
. . . . . . . . . . 11
⊢ dom 𝐷 ⊆ 𝐻 |
153 | 147, 152 | eqssi 3933 |
. . . . . . . . . 10
⊢ 𝐻 = dom 𝐷 |
154 | 153 | tailfb 34493 |
. . . . . . . . 9
⊢ ((𝐷 ∈ DirRel ∧ 𝐻 ≠ ∅) → ran
(tail‘𝐷) ∈
(fBas‘𝐻)) |
155 | 5, 141, 154 | syl2anc 583 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → ran (tail‘𝐷) ∈ (fBas‘𝐻)) |
156 | | elfm 23006 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐹 ∧ ran (tail‘𝐷) ∈ (fBas‘𝐻) ∧ (2nd ↾ 𝐻):𝐻⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷)) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑑 ∈ ran (tail‘𝐷)((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡))) |
157 | 10, 155, 9, 156 | syl3anc 1369 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷)) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑑 ∈ ran (tail‘𝐷)((2nd ↾ 𝐻) “ 𝑑) ⊆ 𝑡))) |
158 | | filfbas 22907 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
159 | | elfg 22930 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑛 ∈ 𝐹 𝑛 ⊆ 𝑡))) |
160 | 158, 159 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑛 ∈ 𝐹 𝑛 ⊆ 𝑡))) |
161 | 121, 157,
160 | 3bitr4d 310 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷)) ↔ 𝑡 ∈ (𝑋filGen𝐹))) |
162 | 161 | eqrdv 2736 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷)) = (𝑋filGen𝐹)) |
163 | | fgfil 22934 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
164 | 162, 163 | eqtr2d 2779 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 = ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷))) |
165 | 20, 164 | jca 511 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → ((2nd
↾ 𝐻):dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷)))) |
166 | | feq1 6565 |
. . . . 5
⊢ (𝑓 = (2nd ↾ 𝐻) → (𝑓:dom 𝐷⟶𝑋 ↔ (2nd ↾ 𝐻):dom 𝐷⟶𝑋)) |
167 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑓 = (2nd ↾ 𝐻) → (𝑋 FilMap 𝑓) = (𝑋 FilMap (2nd ↾ 𝐻))) |
168 | 167 | fveq1d 6758 |
. . . . . 6
⊢ (𝑓 = (2nd ↾ 𝐻) → ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)) = ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷))) |
169 | 168 | eqeq2d 2749 |
. . . . 5
⊢ (𝑓 = (2nd ↾ 𝐻) → (𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)) ↔ 𝐹 = ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷)))) |
170 | 166, 169 | anbi12d 630 |
. . . 4
⊢ (𝑓 = (2nd ↾ 𝐻) → ((𝑓:dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))) ↔ ((2nd ↾ 𝐻):dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷))))) |
171 | 170 | spcegv 3526 |
. . 3
⊢
((2nd ↾ 𝐻) ∈ V → (((2nd ↾
𝐻):dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap (2nd ↾ 𝐻))‘ran (tail‘𝐷))) → ∃𝑓(𝑓:dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))))) |
172 | 14, 165, 171 | sylc 65 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑓(𝑓:dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))) |
173 | | dmeq 5801 |
. . . . . 6
⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) |
174 | 173 | feq2d 6570 |
. . . . 5
⊢ (𝑑 = 𝐷 → (𝑓:dom 𝑑⟶𝑋 ↔ 𝑓:dom 𝐷⟶𝑋)) |
175 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (tail‘𝑑) = (tail‘𝐷)) |
176 | 175 | rneqd 5836 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ran (tail‘𝑑) = ran (tail‘𝐷)) |
177 | 176 | fveq2d 6760 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)) = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))) |
178 | 177 | eqeq2d 2749 |
. . . . 5
⊢ (𝑑 = 𝐷 → (𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)) ↔ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))) |
179 | 174, 178 | anbi12d 630 |
. . . 4
⊢ (𝑑 = 𝐷 → ((𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))) ↔ (𝑓:dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))))) |
180 | 179 | exbidv 1925 |
. . 3
⊢ (𝑑 = 𝐷 → (∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))) ↔ ∃𝑓(𝑓:dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))))) |
181 | 180 | rspcev 3552 |
. 2
⊢ ((𝐷 ∈ DirRel ∧
∃𝑓(𝑓:dom 𝐷⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |
182 | 5, 172, 181 | syl2anc 583 |
1
⊢ (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑⟶𝑋 ∧ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)))) |