Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem4 Structured version   Visualization version   GIF version

Theorem filnetlem4 34570
Description: Lemma for filnet 34571. (Contributed by Jeff Hankins, 15-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem4 (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Distinct variable groups:   𝑥,𝑦   𝑓,𝑑,𝑛,𝑥,𝑦,𝐹   𝐻,𝑑,𝑓,𝑥,𝑦   𝐷,𝑑,𝑓   𝑋,𝑑,𝑓,𝑛
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑋(𝑥,𝑦)

Proof of Theorem filnetlem4
Dummy variables 𝑘 𝑚 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filnet.h . . . . 5 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
2 filnet.d . . . . 5 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
31, 2filnetlem3 34569 . . . 4 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
43simpri 486 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))
54simprd 496 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel)
6 f2ndres 7856 . . . . 5 (2nd ↾ (𝐹 × 𝑋)):(𝐹 × 𝑋)⟶𝑋
74simpld 495 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋))
8 fssres2 6642 . . . . 5 (((2nd ↾ (𝐹 × 𝑋)):(𝐹 × 𝑋)⟶𝑋𝐻 ⊆ (𝐹 × 𝑋)) → (2nd𝐻):𝐻𝑋)
96, 7, 8sylancr 587 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (2nd𝐻):𝐻𝑋)
10 filtop 23006 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
11 xpexg 7600 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → (𝐹 × 𝑋) ∈ V)
1210, 11mpdan 684 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V)
1312, 7ssexd 5248 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V)
149, 13fexd 7103 . . 3 (𝐹 ∈ (Fil‘𝑋) → (2nd𝐻) ∈ V)
153simpli 484 . . . . . . 7 𝐻 = 𝐷
16 dirdm 18318 . . . . . . . 8 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
175, 16syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → dom 𝐷 = 𝐷)
1815, 17eqtr4id 2797 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝐻 = dom 𝐷)
1918feq2d 6586 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((2nd𝐻):𝐻𝑋 ↔ (2nd𝐻):dom 𝐷𝑋))
209, 19mpbid 231 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (2nd𝐻):dom 𝐷𝑋)
21 eqid 2738 . . . . . . . . . . . . . 14 dom 𝐷 = dom 𝐷
2221tailf 34564 . . . . . . . . . . . . 13 (𝐷 ∈ DirRel → (tail‘𝐷):dom 𝐷⟶𝒫 dom 𝐷)
235, 22syl 17 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → (tail‘𝐷):dom 𝐷⟶𝒫 dom 𝐷)
2418feq2d 6586 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((tail‘𝐷):𝐻⟶𝒫 dom 𝐷 ↔ (tail‘𝐷):dom 𝐷⟶𝒫 dom 𝐷))
2523, 24mpbird 256 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → (tail‘𝐷):𝐻⟶𝒫 dom 𝐷)
2625adantr 481 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) → (tail‘𝐷):𝐻⟶𝒫 dom 𝐷)
27 ffn 6600 . . . . . . . . . 10 ((tail‘𝐷):𝐻⟶𝒫 dom 𝐷 → (tail‘𝐷) Fn 𝐻)
28 imaeq2 5965 . . . . . . . . . . . 12 (𝑑 = ((tail‘𝐷)‘𝑓) → ((2nd𝐻) “ 𝑑) = ((2nd𝐻) “ ((tail‘𝐷)‘𝑓)))
2928sseq1d 3952 . . . . . . . . . . 11 (𝑑 = ((tail‘𝐷)‘𝑓) → (((2nd𝐻) “ 𝑑) ⊆ 𝑡 ↔ ((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡))
3029rexrn 6963 . . . . . . . . . 10 ((tail‘𝐷) Fn 𝐻 → (∃𝑑 ∈ ran (tail‘𝐷)((2nd𝐻) “ 𝑑) ⊆ 𝑡 ↔ ∃𝑓𝐻 ((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡))
3126, 27, 303syl 18 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) → (∃𝑑 ∈ ran (tail‘𝐷)((2nd𝐻) “ 𝑑) ⊆ 𝑡 ↔ ∃𝑓𝐻 ((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡))
32 fo2nd 7852 . . . . . . . . . . . . . . 15 2nd :V–onto→V
33 fofn 6690 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd Fn V)
3432, 33ax-mp 5 . . . . . . . . . . . . . 14 2nd Fn V
35 ssv 3945 . . . . . . . . . . . . . 14 𝐻 ⊆ V
36 fnssres 6555 . . . . . . . . . . . . . 14 ((2nd Fn V ∧ 𝐻 ⊆ V) → (2nd𝐻) Fn 𝐻)
3734, 35, 36mp2an 689 . . . . . . . . . . . . 13 (2nd𝐻) Fn 𝐻
38 fnfun 6533 . . . . . . . . . . . . 13 ((2nd𝐻) Fn 𝐻 → Fun (2nd𝐻))
3937, 38ax-mp 5 . . . . . . . . . . . 12 Fun (2nd𝐻)
4026ffvelrnda 6961 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((tail‘𝐷)‘𝑓) ∈ 𝒫 dom 𝐷)
4140elpwid 4544 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((tail‘𝐷)‘𝑓) ⊆ dom 𝐷)
4218ad2antrr 723 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → 𝐻 = dom 𝐷)
4341, 42sseqtrrd 3962 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((tail‘𝐷)‘𝑓) ⊆ 𝐻)
4437fndmi 6537 . . . . . . . . . . . . 13 dom (2nd𝐻) = 𝐻
4543, 44sseqtrrdi 3972 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((tail‘𝐷)‘𝑓) ⊆ dom (2nd𝐻))
46 funimass4 6834 . . . . . . . . . . . 12 ((Fun (2nd𝐻) ∧ ((tail‘𝐷)‘𝑓) ⊆ dom (2nd𝐻)) → (((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∀𝑑 ∈ ((tail‘𝐷)‘𝑓)((2nd𝐻)‘𝑑) ∈ 𝑡))
4739, 45, 46sylancr 587 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → (((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∀𝑑 ∈ ((tail‘𝐷)‘𝑓)((2nd𝐻)‘𝑑) ∈ 𝑡))
485ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → 𝐷 ∈ DirRel)
49 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → 𝑓𝐻)
5049, 42eleqtrd 2841 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → 𝑓 ∈ dom 𝐷)
51 vex 3436 . . . . . . . . . . . . . . . . 17 𝑑 ∈ V
5251a1i 11 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → 𝑑 ∈ V)
5321eltail 34563 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ DirRel ∧ 𝑓 ∈ dom 𝐷𝑑 ∈ V) → (𝑑 ∈ ((tail‘𝐷)‘𝑓) ↔ 𝑓𝐷𝑑))
5448, 50, 52, 53syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → (𝑑 ∈ ((tail‘𝐷)‘𝑓) ↔ 𝑓𝐷𝑑))
5549biantrurd 533 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → (𝑑𝐻 ↔ (𝑓𝐻𝑑𝐻)))
5655anbi1d 630 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) ↔ ((𝑓𝐻𝑑𝐻) ∧ (1st𝑑) ⊆ (1st𝑓))))
57 vex 3436 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
581, 2, 57, 51filnetlem1 34567 . . . . . . . . . . . . . . . 16 (𝑓𝐷𝑑 ↔ ((𝑓𝐻𝑑𝐻) ∧ (1st𝑑) ⊆ (1st𝑓)))
5956, 58bitr4di 289 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) ↔ 𝑓𝐷𝑑))
6054, 59bitr4d 281 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → (𝑑 ∈ ((tail‘𝐷)‘𝑓) ↔ (𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓))))
6160imbi1d 342 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((𝑑 ∈ ((tail‘𝐷)‘𝑓) → ((2nd𝐻)‘𝑑) ∈ 𝑡) ↔ ((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) → ((2nd𝐻)‘𝑑) ∈ 𝑡)))
62 fvres 6793 . . . . . . . . . . . . . . . . 17 (𝑑𝐻 → ((2nd𝐻)‘𝑑) = (2nd𝑑))
6362eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑑𝐻 → (((2nd𝐻)‘𝑑) ∈ 𝑡 ↔ (2nd𝑑) ∈ 𝑡))
6463adantr 481 . . . . . . . . . . . . . . 15 ((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) → (((2nd𝐻)‘𝑑) ∈ 𝑡 ↔ (2nd𝑑) ∈ 𝑡))
6564pm5.74i 270 . . . . . . . . . . . . . 14 (((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) → ((2nd𝐻)‘𝑑) ∈ 𝑡) ↔ ((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) → (2nd𝑑) ∈ 𝑡))
66 impexp 451 . . . . . . . . . . . . . 14 (((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) → (2nd𝑑) ∈ 𝑡) ↔ (𝑑𝐻 → ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡)))
6765, 66bitri 274 . . . . . . . . . . . . 13 (((𝑑𝐻 ∧ (1st𝑑) ⊆ (1st𝑓)) → ((2nd𝐻)‘𝑑) ∈ 𝑡) ↔ (𝑑𝐻 → ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡)))
6861, 67bitrdi 287 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → ((𝑑 ∈ ((tail‘𝐷)‘𝑓) → ((2nd𝐻)‘𝑑) ∈ 𝑡) ↔ (𝑑𝐻 → ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡))))
6968ralbidv2 3110 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → (∀𝑑 ∈ ((tail‘𝐷)‘𝑓)((2nd𝐻)‘𝑑) ∈ 𝑡 ↔ ∀𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡)))
7047, 69bitrd 278 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑓𝐻) → (((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∀𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡)))
7170rexbidva 3225 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) → (∃𝑓𝐻 ((2nd𝐻) “ ((tail‘𝐷)‘𝑓)) ⊆ 𝑡 ↔ ∃𝑓𝐻𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡)))
72 vex 3436 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
73 vex 3436 . . . . . . . . . . . . . . . . 17 𝑣 ∈ V
7472, 73op1std 7841 . . . . . . . . . . . . . . . 16 (𝑑 = ⟨𝑘, 𝑣⟩ → (1st𝑑) = 𝑘)
7574sseq1d 3952 . . . . . . . . . . . . . . 15 (𝑑 = ⟨𝑘, 𝑣⟩ → ((1st𝑑) ⊆ (1st𝑓) ↔ 𝑘 ⊆ (1st𝑓)))
7672, 73op2ndd 7842 . . . . . . . . . . . . . . . 16 (𝑑 = ⟨𝑘, 𝑣⟩ → (2nd𝑑) = 𝑣)
7776eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑑 = ⟨𝑘, 𝑣⟩ → ((2nd𝑑) ∈ 𝑡𝑣𝑡))
7875, 77imbi12d 345 . . . . . . . . . . . . . 14 (𝑑 = ⟨𝑘, 𝑣⟩ → (((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ (𝑘 ⊆ (1st𝑓) → 𝑣𝑡)))
7978raliunxp 5748 . . . . . . . . . . . . 13 (∀𝑑 𝑘𝐹 ({𝑘} × 𝑘)((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ ∀𝑘𝐹𝑣𝑘 (𝑘 ⊆ (1st𝑓) → 𝑣𝑡))
80 sneq 4571 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → {𝑛} = {𝑘})
81 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘𝑛 = 𝑘)
8280, 81xpeq12d 5620 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → ({𝑛} × 𝑛) = ({𝑘} × 𝑘))
8382cbviunv 4970 . . . . . . . . . . . . . . 15 𝑛𝐹 ({𝑛} × 𝑛) = 𝑘𝐹 ({𝑘} × 𝑘)
841, 83eqtri 2766 . . . . . . . . . . . . . 14 𝐻 = 𝑘𝐹 ({𝑘} × 𝑘)
8584raleqi 3346 . . . . . . . . . . . . 13 (∀𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ ∀𝑑 𝑘𝐹 ({𝑘} × 𝑘)((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡))
86 dfss3 3909 . . . . . . . . . . . . . . . 16 (𝑘𝑡 ↔ ∀𝑣𝑘 𝑣𝑡)
8786imbi2i 336 . . . . . . . . . . . . . . 15 ((𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ (𝑘 ⊆ (1st𝑓) → ∀𝑣𝑘 𝑣𝑡))
88 r19.21v 3113 . . . . . . . . . . . . . . 15 (∀𝑣𝑘 (𝑘 ⊆ (1st𝑓) → 𝑣𝑡) ↔ (𝑘 ⊆ (1st𝑓) → ∀𝑣𝑘 𝑣𝑡))
8987, 88bitr4i 277 . . . . . . . . . . . . . 14 ((𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ ∀𝑣𝑘 (𝑘 ⊆ (1st𝑓) → 𝑣𝑡))
9089ralbii 3092 . . . . . . . . . . . . 13 (∀𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ ∀𝑘𝐹𝑣𝑘 (𝑘 ⊆ (1st𝑓) → 𝑣𝑡))
9179, 85, 903bitr4i 303 . . . . . . . . . . . 12 (∀𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ ∀𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡))
9291rexbii 3181 . . . . . . . . . . 11 (∃𝑓𝐻𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ ∃𝑓𝐻𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡))
931rexeqi 3347 . . . . . . . . . . 11 (∃𝑓𝐻𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ ∃𝑓 𝑛𝐹 ({𝑛} × 𝑛)∀𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡))
94 vex 3436 . . . . . . . . . . . . . . . 16 𝑛 ∈ V
95 vex 3436 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
9694, 95op1std 7841 . . . . . . . . . . . . . . 15 (𝑓 = ⟨𝑛, 𝑚⟩ → (1st𝑓) = 𝑛)
9796sseq2d 3953 . . . . . . . . . . . . . 14 (𝑓 = ⟨𝑛, 𝑚⟩ → (𝑘 ⊆ (1st𝑓) ↔ 𝑘𝑛))
9897imbi1d 342 . . . . . . . . . . . . 13 (𝑓 = ⟨𝑛, 𝑚⟩ → ((𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ (𝑘𝑛𝑘𝑡)))
9998ralbidv 3112 . . . . . . . . . . . 12 (𝑓 = ⟨𝑛, 𝑚⟩ → (∀𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ ∀𝑘𝐹 (𝑘𝑛𝑘𝑡)))
10099rexiunxp 5749 . . . . . . . . . . 11 (∃𝑓 𝑛𝐹 ({𝑛} × 𝑛)∀𝑘𝐹 (𝑘 ⊆ (1st𝑓) → 𝑘𝑡) ↔ ∃𝑛𝐹𝑚𝑛𝑘𝐹 (𝑘𝑛𝑘𝑡))
10192, 93, 1003bitri 297 . . . . . . . . . 10 (∃𝑓𝐻𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ ∃𝑛𝐹𝑚𝑛𝑘𝐹 (𝑘𝑛𝑘𝑡))
102 fileln0 23001 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → 𝑛 ≠ ∅)
103102adantlr 712 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑛𝐹) → 𝑛 ≠ ∅)
104 r19.9rzv 4430 . . . . . . . . . . . . 13 (𝑛 ≠ ∅ → (∀𝑘𝐹 (𝑘𝑛𝑘𝑡) ↔ ∃𝑚𝑛𝑘𝐹 (𝑘𝑛𝑘𝑡)))
105103, 104syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑛𝐹) → (∀𝑘𝐹 (𝑘𝑛𝑘𝑡) ↔ ∃𝑚𝑛𝑘𝐹 (𝑘𝑛𝑘𝑡)))
106 ssid 3943 . . . . . . . . . . . . . . 15 𝑛𝑛
107 sseq1 3946 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘𝑛𝑛𝑛))
108 sseq1 3946 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘𝑡𝑛𝑡))
109107, 108imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑘𝑛𝑘𝑡) ↔ (𝑛𝑛𝑛𝑡)))
110109rspcv 3557 . . . . . . . . . . . . . . 15 (𝑛𝐹 → (∀𝑘𝐹 (𝑘𝑛𝑘𝑡) → (𝑛𝑛𝑛𝑡)))
111106, 110mpii 46 . . . . . . . . . . . . . 14 (𝑛𝐹 → (∀𝑘𝐹 (𝑘𝑛𝑘𝑡) → 𝑛𝑡))
112111adantl 482 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑛𝐹) → (∀𝑘𝐹 (𝑘𝑛𝑘𝑡) → 𝑛𝑡))
113 sstr2 3928 . . . . . . . . . . . . . . 15 (𝑘𝑛 → (𝑛𝑡𝑘𝑡))
114113com12 32 . . . . . . . . . . . . . 14 (𝑛𝑡 → (𝑘𝑛𝑘𝑡))
115114ralrimivw 3104 . . . . . . . . . . . . 13 (𝑛𝑡 → ∀𝑘𝐹 (𝑘𝑛𝑘𝑡))
116112, 115impbid1 224 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑛𝐹) → (∀𝑘𝐹 (𝑘𝑛𝑘𝑡) ↔ 𝑛𝑡))
117105, 116bitr3d 280 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) ∧ 𝑛𝐹) → (∃𝑚𝑛𝑘𝐹 (𝑘𝑛𝑘𝑡) ↔ 𝑛𝑡))
118117rexbidva 3225 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) → (∃𝑛𝐹𝑚𝑛𝑘𝐹 (𝑘𝑛𝑘𝑡) ↔ ∃𝑛𝐹 𝑛𝑡))
119101, 118syl5bb 283 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) → (∃𝑓𝐻𝑑𝐻 ((1st𝑑) ⊆ (1st𝑓) → (2nd𝑑) ∈ 𝑡) ↔ ∃𝑛𝐹 𝑛𝑡))
12031, 71, 1193bitrd 305 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑡𝑋) → (∃𝑑 ∈ ran (tail‘𝐷)((2nd𝐻) “ 𝑑) ⊆ 𝑡 ↔ ∃𝑛𝐹 𝑛𝑡))
121120pm5.32da 579 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → ((𝑡𝑋 ∧ ∃𝑑 ∈ ran (tail‘𝐷)((2nd𝐻) “ 𝑑) ⊆ 𝑡) ↔ (𝑡𝑋 ∧ ∃𝑛𝐹 𝑛𝑡)))
122 filn0 23013 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
12394snnz 4712 . . . . . . . . . . . . . . . 16 {𝑛} ≠ ∅
124102, 123jctil 520 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ({𝑛} ≠ ∅ ∧ 𝑛 ≠ ∅))
125 neanior 3037 . . . . . . . . . . . . . . 15 (({𝑛} ≠ ∅ ∧ 𝑛 ≠ ∅) ↔ ¬ ({𝑛} = ∅ ∨ 𝑛 = ∅))
126124, 125sylib 217 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ¬ ({𝑛} = ∅ ∨ 𝑛 = ∅))
127 ss0b 4331 . . . . . . . . . . . . . . 15 (({𝑛} × 𝑛) ⊆ ∅ ↔ ({𝑛} × 𝑛) = ∅)
128 xpeq0 6063 . . . . . . . . . . . . . . 15 (({𝑛} × 𝑛) = ∅ ↔ ({𝑛} = ∅ ∨ 𝑛 = ∅))
129127, 128bitri 274 . . . . . . . . . . . . . 14 (({𝑛} × 𝑛) ⊆ ∅ ↔ ({𝑛} = ∅ ∨ 𝑛 = ∅))
130126, 129sylnibr 329 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ¬ ({𝑛} × 𝑛) ⊆ ∅)
131130ralrimiva 3103 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ∀𝑛𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅)
132 r19.2z 4425 . . . . . . . . . . . 12 ((𝐹 ≠ ∅ ∧ ∀𝑛𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅) → ∃𝑛𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅)
133122, 131, 132syl2anc 584 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ∃𝑛𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅)
134 rexnal 3169 . . . . . . . . . . 11 (∃𝑛𝐹 ¬ ({𝑛} × 𝑛) ⊆ ∅ ↔ ¬ ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅)
135133, 134sylib 217 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → ¬ ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅)
1361sseq1i 3949 . . . . . . . . . . . 12 (𝐻 ⊆ ∅ ↔ 𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅)
137 ss0b 4331 . . . . . . . . . . . 12 (𝐻 ⊆ ∅ ↔ 𝐻 = ∅)
138 iunss 4975 . . . . . . . . . . . 12 ( 𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅ ↔ ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅)
139136, 137, 1383bitr3i 301 . . . . . . . . . . 11 (𝐻 = ∅ ↔ ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅)
140139necon3abii 2990 . . . . . . . . . 10 (𝐻 ≠ ∅ ↔ ¬ ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ∅)
141135, 140sylibr 233 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ≠ ∅)
142 dmresi 5961 . . . . . . . . . . . 12 dom ( I ↾ 𝐻) = 𝐻
1431, 2filnetlem2 34568 . . . . . . . . . . . . . 14 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
144143simpli 484 . . . . . . . . . . . . 13 ( I ↾ 𝐻) ⊆ 𝐷
145 dmss 5811 . . . . . . . . . . . . 13 (( I ↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷)
146144, 145ax-mp 5 . . . . . . . . . . . 12 dom ( I ↾ 𝐻) ⊆ dom 𝐷
147142, 146eqsstrri 3956 . . . . . . . . . . 11 𝐻 ⊆ dom 𝐷
148143simpri 486 . . . . . . . . . . . . 13 𝐷 ⊆ (𝐻 × 𝐻)
149 dmss 5811 . . . . . . . . . . . . 13 (𝐷 ⊆ (𝐻 × 𝐻) → dom 𝐷 ⊆ dom (𝐻 × 𝐻))
150148, 149ax-mp 5 . . . . . . . . . . . 12 dom 𝐷 ⊆ dom (𝐻 × 𝐻)
151 dmxpid 5839 . . . . . . . . . . . 12 dom (𝐻 × 𝐻) = 𝐻
152150, 151sseqtri 3957 . . . . . . . . . . 11 dom 𝐷𝐻
153147, 152eqssi 3937 . . . . . . . . . 10 𝐻 = dom 𝐷
154153tailfb 34566 . . . . . . . . 9 ((𝐷 ∈ DirRel ∧ 𝐻 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝐻))
1555, 141, 154syl2anc 584 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → ran (tail‘𝐷) ∈ (fBas‘𝐻))
156 elfm 23098 . . . . . . . 8 ((𝑋𝐹 ∧ ran (tail‘𝐷) ∈ (fBas‘𝐻) ∧ (2nd𝐻):𝐻𝑋) → (𝑡 ∈ ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)) ↔ (𝑡𝑋 ∧ ∃𝑑 ∈ ran (tail‘𝐷)((2nd𝐻) “ 𝑑) ⊆ 𝑡)))
15710, 155, 9, 156syl3anc 1370 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)) ↔ (𝑡𝑋 ∧ ∃𝑑 ∈ ran (tail‘𝐷)((2nd𝐻) “ 𝑑) ⊆ 𝑡)))
158 filfbas 22999 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
159 elfg 23022 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑛𝐹 𝑛𝑡)))
160158, 159syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑛𝐹 𝑛𝑡)))
161121, 157, 1603bitr4d 311 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)) ↔ 𝑡 ∈ (𝑋filGen𝐹)))
162161eqrdv 2736 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)) = (𝑋filGen𝐹))
163 fgfil 23026 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
164162, 163eqtr2d 2779 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)))
16520, 164jca 512 . . 3 (𝐹 ∈ (Fil‘𝑋) → ((2nd𝐻):dom 𝐷𝑋𝐹 = ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷))))
166 feq1 6581 . . . . 5 (𝑓 = (2nd𝐻) → (𝑓:dom 𝐷𝑋 ↔ (2nd𝐻):dom 𝐷𝑋))
167 oveq2 7283 . . . . . . 7 (𝑓 = (2nd𝐻) → (𝑋 FilMap 𝑓) = (𝑋 FilMap (2nd𝐻)))
168167fveq1d 6776 . . . . . 6 (𝑓 = (2nd𝐻) → ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)) = ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)))
169168eqeq2d 2749 . . . . 5 (𝑓 = (2nd𝐻) → (𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)) ↔ 𝐹 = ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷))))
170166, 169anbi12d 631 . . . 4 (𝑓 = (2nd𝐻) → ((𝑓:dom 𝐷𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))) ↔ ((2nd𝐻):dom 𝐷𝑋𝐹 = ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷)))))
171170spcegv 3536 . . 3 ((2nd𝐻) ∈ V → (((2nd𝐻):dom 𝐷𝑋𝐹 = ((𝑋 FilMap (2nd𝐻))‘ran (tail‘𝐷))) → ∃𝑓(𝑓:dom 𝐷𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))))
17214, 165, 171sylc 65 . 2 (𝐹 ∈ (Fil‘𝑋) → ∃𝑓(𝑓:dom 𝐷𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))))
173 dmeq 5812 . . . . . 6 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
174173feq2d 6586 . . . . 5 (𝑑 = 𝐷 → (𝑓:dom 𝑑𝑋𝑓:dom 𝐷𝑋))
175 fveq2 6774 . . . . . . . 8 (𝑑 = 𝐷 → (tail‘𝑑) = (tail‘𝐷))
176175rneqd 5847 . . . . . . 7 (𝑑 = 𝐷 → ran (tail‘𝑑) = ran (tail‘𝐷))
177176fveq2d 6778 . . . . . 6 (𝑑 = 𝐷 → ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)) = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))
178177eqeq2d 2749 . . . . 5 (𝑑 = 𝐷 → (𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑)) ↔ 𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷))))
179174, 178anbi12d 631 . . . 4 (𝑑 = 𝐷 → ((𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))) ↔ (𝑓:dom 𝐷𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))))
180179exbidv 1924 . . 3 (𝑑 = 𝐷 → (∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))) ↔ ∃𝑓(𝑓:dom 𝐷𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))))
181180rspcev 3561 . 2 ((𝐷 ∈ DirRel ∧ ∃𝑓(𝑓:dom 𝐷𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝐷)))) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
1825, 172, 181syl2anc 584 1 (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074  {copab 5136   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  DirRelcdir 18312  tailctail 18313  fBascfbas 20585  filGencfg 20586  Filcfil 22996   FilMap cfm 23084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-dir 18314  df-tail 18315  df-fbas 20594  df-fg 20595  df-fil 22997  df-fm 23089
This theorem is referenced by:  filnet  34571
  Copyright terms: Public domain W3C validator