HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr3 Structured version   Visualization version   GIF version

Theorem mdbr3 32275
Description: Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr3 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdbr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdbr 32272 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
2 chincl 31477 . . . . . . . 8 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
3 inss2 4188 . . . . . . . . 9 (𝑥𝐵) ⊆ 𝐵
4 sseq1 3960 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (𝑦𝐵 ↔ (𝑥𝐵) ⊆ 𝐵))
5 oveq1 7353 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 𝐴) = ((𝑥𝐵) ∨ 𝐴))
65ineq1d 4169 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → ((𝑦 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
7 oveq1 7353 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
86, 7eqeq12d 2747 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
94, 8imbi12d 344 . . . . . . . . . 10 (𝑦 = (𝑥𝐵) → ((𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
109rspcv 3573 . . . . . . . . 9 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
113, 10mpii 46 . . . . . . . 8 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
122, 11syl 17 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
1312ex 412 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1413com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (𝑥C → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1514ralrimdv 3130 . . . 4 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
16 dfss 3921 . . . . . . . . . . 11 (𝑥𝐵𝑥 = (𝑥𝐵))
1716biimpi 216 . . . . . . . . . 10 (𝑥𝐵𝑥 = (𝑥𝐵))
1817oveq1d 7361 . . . . . . . . 9 (𝑥𝐵 → (𝑥 𝐴) = ((𝑥𝐵) ∨ 𝐴))
1918ineq1d 4169 . . . . . . . 8 (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
2017oveq1d 7361 . . . . . . . 8 (𝑥𝐵 → (𝑥 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
2119, 20eqeq12d 2747 . . . . . . 7 (𝑥𝐵 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
2221biimprcd 250 . . . . . 6 ((((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
2322ralimi 3069 . . . . 5 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
24 sseq1 3960 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
25 oveq1 7353 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
2625ineq1d 4169 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
27 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
2826, 27eqeq12d 2747 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
2924, 28imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
3029cbvralvw 3210 . . . . 5 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3123, 30sylib 218 . . . 4 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3215, 31impbid1 225 . . 3 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
3332adantl 481 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
341, 33bitrd 279 1 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3901  wss 3902   class class class wbr 5091  (class class class)co 7346   C cch 30907   chj 30911   𝑀 cmd 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066  ax-hilex 30977  ax-hfvadd 30978  ax-hv0cl 30981  ax-hfvmul 30983
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-nn 12126  df-hlim 30950  df-sh 31185  df-ch 31199  df-md 32258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator