HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr3 Structured version   Visualization version   GIF version

Theorem mdbr3 32316
Description: Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr3 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdbr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdbr 32313 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
2 chincl 31518 . . . . . . . 8 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
3 inss2 4238 . . . . . . . . 9 (𝑥𝐵) ⊆ 𝐵
4 sseq1 4009 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (𝑦𝐵 ↔ (𝑥𝐵) ⊆ 𝐵))
5 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 𝐴) = ((𝑥𝐵) ∨ 𝐴))
65ineq1d 4219 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → ((𝑦 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
7 oveq1 7438 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
86, 7eqeq12d 2753 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
94, 8imbi12d 344 . . . . . . . . . 10 (𝑦 = (𝑥𝐵) → ((𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
109rspcv 3618 . . . . . . . . 9 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
113, 10mpii 46 . . . . . . . 8 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
122, 11syl 17 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
1312ex 412 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1413com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (𝑥C → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1514ralrimdv 3152 . . . 4 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
16 dfss 3970 . . . . . . . . . . 11 (𝑥𝐵𝑥 = (𝑥𝐵))
1716biimpi 216 . . . . . . . . . 10 (𝑥𝐵𝑥 = (𝑥𝐵))
1817oveq1d 7446 . . . . . . . . 9 (𝑥𝐵 → (𝑥 𝐴) = ((𝑥𝐵) ∨ 𝐴))
1918ineq1d 4219 . . . . . . . 8 (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
2017oveq1d 7446 . . . . . . . 8 (𝑥𝐵 → (𝑥 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
2119, 20eqeq12d 2753 . . . . . . 7 (𝑥𝐵 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
2221biimprcd 250 . . . . . 6 ((((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
2322ralimi 3083 . . . . 5 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
24 sseq1 4009 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
25 oveq1 7438 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
2625ineq1d 4219 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
27 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
2826, 27eqeq12d 2753 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
2924, 28imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
3029cbvralvw 3237 . . . . 5 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3123, 30sylib 218 . . . 4 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3215, 31impbid1 225 . . 3 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
3332adantl 481 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
341, 33bitrd 279 1 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cin 3950  wss 3951   class class class wbr 5143  (class class class)co 7431   C cch 30948   chj 30952   𝑀 cmd 30985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215  ax-hilex 31018  ax-hfvadd 31019  ax-hv0cl 31022  ax-hfvmul 31024
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-map 8868  df-nn 12267  df-hlim 30991  df-sh 31226  df-ch 31240  df-md 32299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator