HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr3 Structured version   Visualization version   GIF version

Theorem mdbr3 32281
Description: Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr3 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdbr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdbr 32278 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
2 chincl 31483 . . . . . . . 8 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
3 inss2 4187 . . . . . . . . 9 (𝑥𝐵) ⊆ 𝐵
4 sseq1 3956 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (𝑦𝐵 ↔ (𝑥𝐵) ⊆ 𝐵))
5 oveq1 7361 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 𝐴) = ((𝑥𝐵) ∨ 𝐴))
65ineq1d 4168 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → ((𝑦 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
7 oveq1 7361 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
86, 7eqeq12d 2749 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
94, 8imbi12d 344 . . . . . . . . . 10 (𝑦 = (𝑥𝐵) → ((𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
109rspcv 3569 . . . . . . . . 9 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
113, 10mpii 46 . . . . . . . 8 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
122, 11syl 17 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
1312ex 412 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1413com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (𝑥C → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1514ralrimdv 3131 . . . 4 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
16 dfss 3917 . . . . . . . . . . 11 (𝑥𝐵𝑥 = (𝑥𝐵))
1716biimpi 216 . . . . . . . . . 10 (𝑥𝐵𝑥 = (𝑥𝐵))
1817oveq1d 7369 . . . . . . . . 9 (𝑥𝐵 → (𝑥 𝐴) = ((𝑥𝐵) ∨ 𝐴))
1918ineq1d 4168 . . . . . . . 8 (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
2017oveq1d 7369 . . . . . . . 8 (𝑥𝐵 → (𝑥 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
2119, 20eqeq12d 2749 . . . . . . 7 (𝑥𝐵 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
2221biimprcd 250 . . . . . 6 ((((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
2322ralimi 3070 . . . . 5 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
24 sseq1 3956 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
25 oveq1 7361 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
2625ineq1d 4168 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
27 oveq1 7361 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
2826, 27eqeq12d 2749 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
2924, 28imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
3029cbvralvw 3211 . . . . 5 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3123, 30sylib 218 . . . 4 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3215, 31impbid1 225 . . 3 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
3332adantl 481 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
341, 33bitrd 279 1 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cin 3897  wss 3898   class class class wbr 5095  (class class class)co 7354   C cch 30913   chj 30917   𝑀 cmd 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-1cn 11073  ax-addcl 11075  ax-hilex 30983  ax-hfvadd 30984  ax-hv0cl 30987  ax-hfvmul 30989
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-map 8760  df-nn 12135  df-hlim 30956  df-sh 31191  df-ch 31205  df-md 32264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator