HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr5 Structured version   Visualization version   GIF version

Theorem dmdbr5 30389
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr5 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmdbr4 30387 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
2 chub1 29588 . . . . . . . . 9 ((𝑥C𝐵C ) → 𝑥 ⊆ (𝑥 𝐵))
32ancoms 462 . . . . . . . 8 ((𝐵C𝑥C ) → 𝑥 ⊆ (𝑥 𝐵))
4 ssin 4145 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ 𝑥 ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
5 sstr2 3908 . . . . . . . . 9 (𝑥 ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
64, 5sylbi 220 . . . . . . . 8 ((𝑥 ⊆ (𝑥 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
73, 6sylan 583 . . . . . . 7 (((𝐵C𝑥C ) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
87ex 416 . . . . . 6 ((𝐵C𝑥C ) → (𝑥 ⊆ (𝐴 𝐵) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
98com23 86 . . . . 5 ((𝐵C𝑥C ) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
109ralimdva 3100 . . . 4 (𝐵C → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1110adantl 485 . . 3 ((𝐴C𝐵C ) → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
121, 11sylbid 243 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 → ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
13 sseq1 3926 . . . . . . 7 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵)))
14 id 22 . . . . . . . 8 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → 𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)))
15 oveq1 7220 . . . . . . . . . 10 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (𝑥 𝐵) = (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵))
1615ineq1d 4126 . . . . . . . . 9 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ 𝐴) = ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴))
1716oveq1d 7228 . . . . . . . 8 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
1814, 17sseq12d 3934 . . . . . . 7 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
1913, 18imbi12d 348 . . . . . 6 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → ((𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))))
2019rspccv 3534 . . . . 5 (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))))
21 chjcl 29438 . . . . . . . . . . . 12 ((𝑦C𝐵C ) → (𝑦 𝐵) ∈ C )
2221ancoms 462 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝑦 𝐵) ∈ C )
2322adantll 714 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 𝐵) ∈ C )
24 chjcl 29438 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
2524adantr 484 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝐴 𝐵) ∈ C )
26 chincl 29580 . . . . . . . . . 10 (((𝑦 𝐵) ∈ C ∧ (𝐴 𝐵) ∈ C ) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C )
2723, 25, 26syl2anc 587 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C )
28 inss2 4144 . . . . . . . . . 10 ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵)
29 pm2.27 42 . . . . . . . . . 10 (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))))
3028, 29mpii 46 . . . . . . . . 9 (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3127, 30syl 17 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
32 chub2 29589 . . . . . . . . . . . . . . 15 ((𝐵C𝑦C ) → 𝐵 ⊆ (𝑦 𝐵))
3332adantll 714 . . . . . . . . . . . . . 14 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵 ⊆ (𝑦 𝐵))
34 chub2 29589 . . . . . . . . . . . . . . . 16 ((𝐵C𝐴C ) → 𝐵 ⊆ (𝐴 𝐵))
3534ancoms 462 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → 𝐵 ⊆ (𝐴 𝐵))
3635adantr 484 . . . . . . . . . . . . . 14 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵 ⊆ (𝐴 𝐵))
3733, 36ssind 4147 . . . . . . . . . . . . 13 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵 ⊆ ((𝑦 𝐵) ∩ (𝐴 𝐵)))
38 simplr 769 . . . . . . . . . . . . . 14 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵C )
39 chlejb2 29594 . . . . . . . . . . . . . 14 ((𝐵C ∧ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C ) → (𝐵 ⊆ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ↔ (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) = ((𝑦 𝐵) ∩ (𝐴 𝐵))))
4038, 27, 39syl2anc 587 . . . . . . . . . . . . 13 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝐵 ⊆ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ↔ (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) = ((𝑦 𝐵) ∩ (𝐴 𝐵))))
4137, 40mpbid 235 . . . . . . . . . . . 12 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) = ((𝑦 𝐵) ∩ (𝐴 𝐵)))
4241ineq1d 4126 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) = (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴))
43 inass 4134 . . . . . . . . . . . . 13 (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴) = ((𝑦 𝐵) ∩ ((𝐴 𝐵) ∩ 𝐴))
44 incom 4115 . . . . . . . . . . . . . . 15 ((𝐴 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 𝐵))
45 chabs2 29598 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (𝐴 ∩ (𝐴 𝐵)) = 𝐴)
4644, 45syl5eq 2790 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((𝐴 𝐵) ∩ 𝐴) = 𝐴)
4746ineq2d 4127 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → ((𝑦 𝐵) ∩ ((𝐴 𝐵) ∩ 𝐴)) = ((𝑦 𝐵) ∩ 𝐴))
4843, 47syl5eq 2790 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴) = ((𝑦 𝐵) ∩ 𝐴))
4948adantr 484 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴) = ((𝑦 𝐵) ∩ 𝐴))
5042, 49eqtrd 2777 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) = ((𝑦 𝐵) ∩ 𝐴))
5150oveq1d 7228 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵) = (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))
5251sseq2d 3933 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
5331, 52sylibd 242 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
5453ex 416 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))))
5554com23 86 . . . . 5 ((𝐴C𝐵C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → (𝑦C → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))))
5620, 55syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → (𝑦C → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))))
5756ralrimdv 3109 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → ∀𝑦C ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
58 dmdbr4 30387 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑦C ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
5957, 58sylibrd 262 . 2 ((𝐴C𝐵C ) → (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → 𝐴 𝑀* 𝐵))
6012, 59impbid 215 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  cin 3865  wss 3866   class class class wbr 5053  (class class class)co 7213   C cch 29010   chj 29014   𝑀* cdmd 29048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809  ax-hilex 29080  ax-hfvadd 29081  ax-hvcom 29082  ax-hvass 29083  ax-hv0cl 29084  ax-hvaddid 29085  ax-hfvmul 29086  ax-hvmulid 29087  ax-hvmulass 29088  ax-hvdistr1 29089  ax-hvdistr2 29090  ax-hvmul0 29091  ax-hfi 29160  ax-his1 29163  ax-his2 29164  ax-his3 29165  ax-his4 29166  ax-hcompl 29283
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-cn 22124  df-cnp 22125  df-lm 22126  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cfil 24152  df-cau 24153  df-cmet 24154  df-grpo 28574  df-gid 28575  df-ginv 28576  df-gdiv 28577  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-vs 28680  df-nmcv 28681  df-ims 28682  df-dip 28782  df-ssp 28803  df-ph 28894  df-cbn 28944  df-hnorm 29049  df-hba 29050  df-hvsub 29052  df-hlim 29053  df-hcau 29054  df-sh 29288  df-ch 29302  df-oc 29333  df-ch0 29334  df-shs 29389  df-chj 29391  df-dmd 30362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator