HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr5 Structured version   Visualization version   GIF version

Theorem dmdbr5 29781
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr5 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmdbr4 29779 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
2 chub1 28980 . . . . . . . . 9 ((𝑥C𝐵C ) → 𝑥 ⊆ (𝑥 𝐵))
32ancoms 459 . . . . . . . 8 ((𝐵C𝑥C ) → 𝑥 ⊆ (𝑥 𝐵))
4 ssin 4131 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ 𝑥 ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
5 sstr2 3900 . . . . . . . . 9 (𝑥 ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
64, 5sylbi 218 . . . . . . . 8 ((𝑥 ⊆ (𝑥 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
73, 6sylan 580 . . . . . . 7 (((𝐵C𝑥C ) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
87ex 413 . . . . . 6 ((𝐵C𝑥C ) → (𝑥 ⊆ (𝐴 𝐵) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
98com23 86 . . . . 5 ((𝐵C𝑥C ) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
109ralimdva 3144 . . . 4 (𝐵C → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1110adantl 482 . . 3 ((𝐴C𝐵C ) → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
121, 11sylbid 241 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 → ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
13 sseq1 3917 . . . . . . 7 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵)))
14 id 22 . . . . . . . 8 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → 𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)))
15 oveq1 7028 . . . . . . . . . 10 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (𝑥 𝐵) = (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵))
1615ineq1d 4112 . . . . . . . . 9 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ 𝐴) = ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴))
1716oveq1d 7036 . . . . . . . 8 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))
1814, 17sseq12d 3925 . . . . . . 7 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
1913, 18imbi12d 346 . . . . . 6 (𝑥 = ((𝑦 𝐵) ∩ (𝐴 𝐵)) → ((𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))))
2019rspccv 3556 . . . . 5 (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))))
21 chjcl 28830 . . . . . . . . . . . 12 ((𝑦C𝐵C ) → (𝑦 𝐵) ∈ C )
2221ancoms 459 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝑦 𝐵) ∈ C )
2322adantll 710 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 𝐵) ∈ C )
24 chjcl 28830 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
2524adantr 481 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝐴 𝐵) ∈ C )
26 chincl 28972 . . . . . . . . . 10 (((𝑦 𝐵) ∈ C ∧ (𝐴 𝐵) ∈ C ) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C )
2723, 25, 26syl2anc 584 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C )
28 inss2 4130 . . . . . . . . . 10 ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵)
29 pm2.27 42 . . . . . . . . . 10 (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))))
3028, 29mpii 46 . . . . . . . . 9 (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
3127, 30syl 17 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵)))
32 chub2 28981 . . . . . . . . . . . . . . 15 ((𝐵C𝑦C ) → 𝐵 ⊆ (𝑦 𝐵))
3332adantll 710 . . . . . . . . . . . . . 14 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵 ⊆ (𝑦 𝐵))
34 chub2 28981 . . . . . . . . . . . . . . . 16 ((𝐵C𝐴C ) → 𝐵 ⊆ (𝐴 𝐵))
3534ancoms 459 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → 𝐵 ⊆ (𝐴 𝐵))
3635adantr 481 . . . . . . . . . . . . . 14 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵 ⊆ (𝐴 𝐵))
3733, 36ssind 4133 . . . . . . . . . . . . 13 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵 ⊆ ((𝑦 𝐵) ∩ (𝐴 𝐵)))
38 simplr 765 . . . . . . . . . . . . . 14 (((𝐴C𝐵C ) ∧ 𝑦C ) → 𝐵C )
39 chlejb2 28986 . . . . . . . . . . . . . 14 ((𝐵C ∧ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C ) → (𝐵 ⊆ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ↔ (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) = ((𝑦 𝐵) ∩ (𝐴 𝐵))))
4038, 27, 39syl2anc 584 . . . . . . . . . . . . 13 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝐵 ⊆ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ↔ (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) = ((𝑦 𝐵) ∩ (𝐴 𝐵))))
4137, 40mpbid 233 . . . . . . . . . . . 12 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) = ((𝑦 𝐵) ∩ (𝐴 𝐵)))
4241ineq1d 4112 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) = (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴))
43 inass 4120 . . . . . . . . . . . . 13 (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴) = ((𝑦 𝐵) ∩ ((𝐴 𝐵) ∩ 𝐴))
44 incom 4103 . . . . . . . . . . . . . . 15 ((𝐴 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 𝐵))
45 chabs2 28990 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (𝐴 ∩ (𝐴 𝐵)) = 𝐴)
4644, 45syl5eq 2843 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((𝐴 𝐵) ∩ 𝐴) = 𝐴)
4746ineq2d 4113 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → ((𝑦 𝐵) ∩ ((𝐴 𝐵) ∩ 𝐴)) = ((𝑦 𝐵) ∩ 𝐴))
4843, 47syl5eq 2843 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴) = ((𝑦 𝐵) ∩ 𝐴))
4948adantr 481 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ∩ 𝐴) = ((𝑦 𝐵) ∩ 𝐴))
5042, 49eqtrd 2831 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) = ((𝑦 𝐵) ∩ 𝐴))
5150oveq1d 7036 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵) = (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))
5251sseq2d 3924 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
5331, 52sylibd 240 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
5453ex 413 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))))
5554com23 86 . . . . 5 ((𝐴C𝐵C ) → ((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∈ C → (((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝐴 𝐵) → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((((𝑦 𝐵) ∩ (𝐴 𝐵)) ∨ 𝐵) ∩ 𝐴) ∨ 𝐵))) → (𝑦C → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))))
5620, 55syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → (𝑦C → ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵))))
5756ralrimdv 3155 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → ∀𝑦C ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
58 dmdbr4 29779 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑦C ((𝑦 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑦 𝐵) ∩ 𝐴) ∨ 𝐵)))
5957, 58sylibrd 260 . 2 ((𝐴C𝐵C ) → (∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → 𝐴 𝑀* 𝐵))
6012, 59impbid 213 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  cin 3862  wss 3863   class class class wbr 4966  (class class class)co 7021   C cch 28402   chj 28406   𝑀* cdmd 28440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cc 9708  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466  ax-addf 10467  ax-mulf 10468  ax-hilex 28472  ax-hfvadd 28473  ax-hvcom 28474  ax-hvass 28475  ax-hv0cl 28476  ax-hvaddid 28477  ax-hfvmul 28478  ax-hvmulid 28479  ax-hvmulass 28480  ax-hvdistr1 28481  ax-hvdistr2 28482  ax-hvmul0 28483  ax-hfi 28552  ax-his1 28555  ax-his2 28556  ax-his3 28557  ax-his4 28558  ax-hcompl 28675
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-omul 7963  df-er 8144  df-map 8263  df-pm 8264  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-fi 8726  df-sup 8757  df-inf 8758  df-oi 8825  df-card 9219  df-acn 9222  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-q 12203  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ioo 12597  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-fl 13017  df-seq 13225  df-exp 13285  df-hash 13546  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-clim 14684  df-rlim 14685  df-sum 14882  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-rest 16530  df-topn 16531  df-0g 16549  df-gsum 16550  df-topgen 16551  df-pt 16552  df-prds 16555  df-xrs 16609  df-qtop 16614  df-imas 16615  df-xps 16617  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-submnd 17780  df-mulg 17987  df-cntz 18193  df-cmn 18640  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227  df-mopn 20228  df-fbas 20229  df-fg 20230  df-cnfld 20233  df-top 21191  df-topon 21208  df-topsp 21230  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-nei 21395  df-cn 21524  df-cnp 21525  df-lm 21526  df-haus 21612  df-tx 21859  df-hmeo 22052  df-fil 22143  df-fm 22235  df-flim 22236  df-flf 22237  df-xms 22618  df-ms 22619  df-tms 22620  df-cfil 23546  df-cau 23547  df-cmet 23548  df-grpo 27966  df-gid 27967  df-ginv 27968  df-gdiv 27969  df-ablo 28018  df-vc 28032  df-nv 28065  df-va 28068  df-ba 28069  df-sm 28070  df-0v 28071  df-vs 28072  df-nmcv 28073  df-ims 28074  df-dip 28174  df-ssp 28195  df-ph 28286  df-cbn 28336  df-hnorm 28441  df-hba 28442  df-hvsub 28444  df-hlim 28445  df-hcau 28446  df-sh 28680  df-ch 28694  df-oc 28725  df-ch0 28726  df-shs 28781  df-chj 28783  df-dmd 29754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator