![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnneiid | Structured version Visualization version GIF version |
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
opnneiid | β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 22603 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ₯ β π½ (π β π₯ β§ π₯ β π)) | |
2 | eqss 3996 | . . . . . 6 β’ (π = π₯ β (π β π₯ β§ π₯ β π)) | |
3 | eleq1a 2828 | . . . . . 6 β’ (π₯ β π½ β (π = π₯ β π β π½)) | |
4 | 2, 3 | biimtrrid 242 | . . . . 5 β’ (π₯ β π½ β ((π β π₯ β§ π₯ β π) β π β π½)) |
5 | 4 | rexlimiv 3148 | . . . 4 β’ (βπ₯ β π½ (π β π₯ β§ π₯ β π) β π β π½) |
6 | 1, 5 | syl 17 | . . 3 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π½) |
7 | 6 | ex 413 | . 2 β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π½)) |
8 | ssid 4003 | . . 3 β’ π β π | |
9 | opnneiss 22613 | . . . 4 β’ ((π½ β Top β§ π β π½ β§ π β π) β π β ((neiβπ½)βπ)) | |
10 | 9 | 3exp 1119 | . . 3 β’ (π½ β Top β (π β π½ β (π β π β π β ((neiβπ½)βπ)))) |
11 | 8, 10 | mpii 46 | . 2 β’ (π½ β Top β (π β π½ β π β ((neiβπ½)βπ))) |
12 | 7, 11 | impbid 211 | 1 β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β wss 3947 βcfv 6540 Topctop 22386 neicnei 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22387 df-nei 22593 |
This theorem is referenced by: 0nei 22623 |
Copyright terms: Public domain | W3C validator |