MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneiid Structured version   Visualization version   GIF version

Theorem opnneiid 23062
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))

Proof of Theorem opnneiid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neii2 23044 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥𝐽 (𝑁𝑥𝑥𝑁))
2 eqss 3974 . . . . . 6 (𝑁 = 𝑥 ↔ (𝑁𝑥𝑥𝑁))
3 eleq1a 2829 . . . . . 6 (𝑥𝐽 → (𝑁 = 𝑥𝑁𝐽))
42, 3biimtrrid 243 . . . . 5 (𝑥𝐽 → ((𝑁𝑥𝑥𝑁) → 𝑁𝐽))
54rexlimiv 3134 . . . 4 (∃𝑥𝐽 (𝑁𝑥𝑥𝑁) → 𝑁𝐽)
61, 5syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁𝐽)
76ex 412 . 2 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁𝐽))
8 ssid 3981 . . 3 𝑁𝑁
9 opnneiss 23054 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑁𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁))
1093exp 1119 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑁𝑁𝑁 ∈ ((nei‘𝐽)‘𝑁))))
118, 10mpii 46 . 2 (𝐽 ∈ Top → (𝑁𝐽𝑁 ∈ ((nei‘𝐽)‘𝑁)))
127, 11impbid 212 1 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  wss 3926  cfv 6530  Topctop 22829  neicnei 23033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-nei 23034
This theorem is referenced by:  0nei  23064
  Copyright terms: Public domain W3C validator