MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneiid Structured version   Visualization version   GIF version

Theorem opnneiid 22621
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid (𝐽 ∈ Top β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘) ↔ 𝑁 ∈ 𝐽))

Proof of Theorem opnneiid
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 neii2 22603 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘)) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑁 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))
2 eqss 3996 . . . . . 6 (𝑁 = π‘₯ ↔ (𝑁 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))
3 eleq1a 2828 . . . . . 6 (π‘₯ ∈ 𝐽 β†’ (𝑁 = π‘₯ β†’ 𝑁 ∈ 𝐽))
42, 3biimtrrid 242 . . . . 5 (π‘₯ ∈ 𝐽 β†’ ((𝑁 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁) β†’ 𝑁 ∈ 𝐽))
54rexlimiv 3148 . . . 4 (βˆƒπ‘₯ ∈ 𝐽 (𝑁 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁) β†’ 𝑁 ∈ 𝐽)
61, 5syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘)) β†’ 𝑁 ∈ 𝐽)
76ex 413 . 2 (𝐽 ∈ Top β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘) β†’ 𝑁 ∈ 𝐽))
8 ssid 4003 . . 3 𝑁 βŠ† 𝑁
9 opnneiss 22613 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑁) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘))
1093exp 1119 . . 3 (𝐽 ∈ Top β†’ (𝑁 ∈ 𝐽 β†’ (𝑁 βŠ† 𝑁 β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘))))
118, 10mpii 46 . 2 (𝐽 ∈ Top β†’ (𝑁 ∈ 𝐽 β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘)))
127, 11impbid 211 1 (𝐽 ∈ Top β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘) ↔ 𝑁 ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βŠ† wss 3947  β€˜cfv 6540  Topctop 22386  neicnei 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-top 22387  df-nei 22593
This theorem is referenced by:  0nei  22623
  Copyright terms: Public domain W3C validator