![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnneiid | Structured version Visualization version GIF version |
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
opnneiid | ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 21324 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
2 | eqss 3836 | . . . . . 6 ⊢ (𝑁 = 𝑥 ↔ (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
3 | eleq1a 2854 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → (𝑁 = 𝑥 → 𝑁 ∈ 𝐽)) | |
4 | 2, 3 | syl5bir 235 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽)) |
5 | 4 | rexlimiv 3209 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽) |
6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁 ∈ 𝐽) |
7 | 6 | ex 403 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁 ∈ 𝐽)) |
8 | ssid 3842 | . . 3 ⊢ 𝑁 ⊆ 𝑁 | |
9 | opnneiss 21334 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁)) | |
10 | 9 | 3exp 1109 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑁 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑁)))) |
11 | 8, 10 | mpii 46 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → 𝑁 ∈ ((nei‘𝐽)‘𝑁))) |
12 | 7, 11 | impbid 204 | 1 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 ⊆ wss 3792 ‘cfv 6137 Topctop 21109 neicnei 21313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-top 21110 df-nei 21314 |
This theorem is referenced by: 0nei 21344 |
Copyright terms: Public domain | W3C validator |