MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneiid Structured version   Visualization version   GIF version

Theorem opnneiid 21734
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))

Proof of Theorem opnneiid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neii2 21716 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥𝐽 (𝑁𝑥𝑥𝑁))
2 eqss 3982 . . . . . 6 (𝑁 = 𝑥 ↔ (𝑁𝑥𝑥𝑁))
3 eleq1a 2908 . . . . . 6 (𝑥𝐽 → (𝑁 = 𝑥𝑁𝐽))
42, 3syl5bir 245 . . . . 5 (𝑥𝐽 → ((𝑁𝑥𝑥𝑁) → 𝑁𝐽))
54rexlimiv 3280 . . . 4 (∃𝑥𝐽 (𝑁𝑥𝑥𝑁) → 𝑁𝐽)
61, 5syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁𝐽)
76ex 415 . 2 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁𝐽))
8 ssid 3989 . . 3 𝑁𝑁
9 opnneiss 21726 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑁𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁))
1093exp 1115 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑁𝑁𝑁 ∈ ((nei‘𝐽)‘𝑁))))
118, 10mpii 46 . 2 (𝐽 ∈ Top → (𝑁𝐽𝑁 ∈ ((nei‘𝐽)‘𝑁)))
127, 11impbid 214 1 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  wss 3936  cfv 6355  Topctop 21501  neicnei 21705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-top 21502  df-nei 21706
This theorem is referenced by:  0nei  21736
  Copyright terms: Public domain W3C validator