Proof of Theorem lublecllem
Step | Hyp | Ref
| Expression |
1 | | breq1 5035 |
. . . 4
⊢ (𝑦 = 𝑧 → (𝑦 ≤ 𝑋 ↔ 𝑧 ≤ 𝑋)) |
2 | 1 | ralrab 3608 |
. . 3
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) |
3 | 1 | ralrab 3608 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤)) |
4 | 3 | imbi1i 353 |
. . . 4
⊢
((∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤) ↔ (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) |
5 | 4 | ralbii 3097 |
. . 3
⊢
(∀𝑤 ∈
𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤) ↔ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) |
6 | 2, 5 | anbi12i 629 |
. 2
⊢
((∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤))) |
7 | | lublecl.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | lublecl.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Poset) |
9 | | lublecl.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
10 | | lublecl.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
11 | 9, 10 | posref 17627 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
12 | 8, 7, 11 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≤ 𝑋) |
13 | | breq1 5035 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑋 ↔ 𝑋 ≤ 𝑋)) |
14 | | breq1 5035 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥)) |
15 | 13, 14 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑧 = 𝑋 → ((𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ↔ (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥))) |
16 | 15 | rspcva 3539 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) → (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥)) |
17 | 12, 16 | syl5com 31 |
. . . . . 6
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) → 𝑋 ≤ 𝑥)) |
18 | 7, 17 | mpand 694 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) → 𝑋 ≤ 𝑥)) |
19 | 18 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) → 𝑋 ≤ 𝑥)) |
20 | | idd 24 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐵 → (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋)) |
21 | 20 | rgen 3080 |
. . . . . 6
⊢
∀𝑧 ∈
𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) |
22 | | breq2 5036 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑋 → (𝑧 ≤ 𝑤 ↔ 𝑧 ≤ 𝑋)) |
23 | 22 | imbi2d 344 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑋 → ((𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) ↔ (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋))) |
24 | 23 | ralbidv 3126 |
. . . . . . . . 9
⊢ (𝑤 = 𝑋 → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) ↔ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋))) |
25 | | breq2 5036 |
. . . . . . . . 9
⊢ (𝑤 = 𝑋 → (𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑋)) |
26 | 24, 25 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑤 = 𝑋 → ((∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) ↔ (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) → 𝑥 ≤ 𝑋))) |
27 | 26 | rspcv 3536 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) → 𝑥 ≤ 𝑋))) |
28 | 7, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) → 𝑥 ≤ 𝑋))) |
29 | 21, 28 | mpii 46 |
. . . . 5
⊢ (𝜑 → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → 𝑥 ≤ 𝑋)) |
30 | 29 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → 𝑥 ≤ 𝑋)) |
31 | 8 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ Poset) |
32 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
33 | 7 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
34 | 9, 10 | posasymb 17628 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥) ↔ 𝑥 = 𝑋)) |
35 | 31, 32, 33, 34 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥) ↔ 𝑥 = 𝑋)) |
36 | 35 | biimpd 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥) → 𝑥 = 𝑋)) |
37 | 36 | ancomsd 469 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑋 ≤ 𝑥 ∧ 𝑥 ≤ 𝑋) → 𝑥 = 𝑋)) |
38 | 19, 30, 37 | syl2and 610 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) → 𝑥 = 𝑋)) |
39 | | breq2 5036 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑋)) |
40 | 39 | biimprd 251 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) |
41 | 40 | ralrimivw 3114 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) |
42 | 41 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) |
43 | 7 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑋 ∈ 𝐵) |
44 | | breq1 5035 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤)) |
45 | 13, 44 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) ↔ (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤))) |
46 | 45 | rspcva 3539 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤)) → (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤)) |
47 | | pm5.5 365 |
. . . . . . . . . . 11
⊢ (𝑋 ≤ 𝑋 → ((𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤) ↔ 𝑋 ≤ 𝑤)) |
48 | 12, 47 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤) ↔ 𝑋 ≤ 𝑤)) |
49 | | breq1 5035 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤)) |
50 | 49 | bicomd 226 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑋 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤)) |
51 | 48, 50 | sylan9bb 513 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤) ↔ 𝑥 ≤ 𝑤)) |
52 | 46, 51 | syl5ib 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤)) → 𝑥 ≤ 𝑤)) |
53 | 43, 52 | mpand 694 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) |
54 | 53 | ralrimivw 3114 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) |
55 | 54 | adantlr 714 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) |
56 | 42, 55 | jca 515 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤))) |
57 | 56 | ex 416 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 = 𝑋 → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)))) |
58 | 38, 57 | impbid 215 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
59 | 6, 58 | syl5bb 286 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |