Proof of Theorem lublecllem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | breq1 5146 | . . . 4
⊢ (𝑦 = 𝑧 → (𝑦 ≤ 𝑋 ↔ 𝑧 ≤ 𝑋)) | 
| 2 | 1 | ralrab 3699 | . . 3
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) | 
| 3 | 1 | ralrab 3699 | . . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤)) | 
| 4 | 3 | imbi1i 349 | . . . 4
⊢
((∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤) ↔ (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) | 
| 5 | 4 | ralbii 3093 | . . 3
⊢
(∀𝑤 ∈
𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤) ↔ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) | 
| 6 | 2, 5 | anbi12i 628 | . 2
⊢
((∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤))) | 
| 7 |  | lublecl.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 8 |  | lublecl.k | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Poset) | 
| 9 |  | lublecl.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) | 
| 10 |  | lublecl.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 11 | 9, 10 | posref 18364 | . . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | 
| 12 | 8, 7, 11 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → 𝑋 ≤ 𝑋) | 
| 13 |  | breq1 5146 | . . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑋 ↔ 𝑋 ≤ 𝑋)) | 
| 14 |  | breq1 5146 | . . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥)) | 
| 15 | 13, 14 | imbi12d 344 | . . . . . . . 8
⊢ (𝑧 = 𝑋 → ((𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ↔ (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥))) | 
| 16 | 15 | rspcva 3620 | . . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) → (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥)) | 
| 17 | 12, 16 | syl5com 31 | . . . . . 6
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) → 𝑋 ≤ 𝑥)) | 
| 18 | 7, 17 | mpand 695 | . . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) → 𝑋 ≤ 𝑥)) | 
| 19 | 18 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) → 𝑋 ≤ 𝑥)) | 
| 20 |  | idd 24 | . . . . . . 7
⊢ (𝑧 ∈ 𝐵 → (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋)) | 
| 21 | 20 | rgen 3063 | . . . . . 6
⊢
∀𝑧 ∈
𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) | 
| 22 |  | breq2 5147 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑋 → (𝑧 ≤ 𝑤 ↔ 𝑧 ≤ 𝑋)) | 
| 23 | 22 | imbi2d 340 | . . . . . . . . . 10
⊢ (𝑤 = 𝑋 → ((𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) ↔ (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋))) | 
| 24 | 23 | ralbidv 3178 | . . . . . . . . 9
⊢ (𝑤 = 𝑋 → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) ↔ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋))) | 
| 25 |  | breq2 5147 | . . . . . . . . 9
⊢ (𝑤 = 𝑋 → (𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑋)) | 
| 26 | 24, 25 | imbi12d 344 | . . . . . . . 8
⊢ (𝑤 = 𝑋 → ((∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) ↔ (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) → 𝑥 ≤ 𝑋))) | 
| 27 | 26 | rspcv 3618 | . . . . . . 7
⊢ (𝑋 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) → 𝑥 ≤ 𝑋))) | 
| 28 | 7, 27 | syl 17 | . . . . . 6
⊢ (𝜑 → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋) → 𝑥 ≤ 𝑋))) | 
| 29 | 21, 28 | mpii 46 | . . . . 5
⊢ (𝜑 → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → 𝑥 ≤ 𝑋)) | 
| 30 | 29 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤) → 𝑥 ≤ 𝑋)) | 
| 31 | 8 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ Poset) | 
| 32 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 33 | 7 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | 
| 34 | 9, 10 | posasymb 18365 | . . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥) ↔ 𝑥 = 𝑋)) | 
| 35 | 31, 32, 33, 34 | syl3anc 1373 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥) ↔ 𝑥 = 𝑋)) | 
| 36 | 35 | biimpd 229 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥) → 𝑥 = 𝑋)) | 
| 37 | 36 | ancomsd 465 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑋 ≤ 𝑥 ∧ 𝑥 ≤ 𝑋) → 𝑥 = 𝑋)) | 
| 38 | 19, 30, 37 | syl2and 608 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) → 𝑥 = 𝑋)) | 
| 39 |  | breq2 5147 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑋)) | 
| 40 | 39 | biimprd 248 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) | 
| 41 | 40 | ralrimivw 3150 | . . . . . 6
⊢ (𝑥 = 𝑋 → ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) | 
| 42 | 41 | adantl 481 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥)) | 
| 43 | 7 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑋 ∈ 𝐵) | 
| 44 |  | breq1 5146 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤)) | 
| 45 | 13, 44 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) ↔ (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤))) | 
| 46 | 45 | rspcva 3620 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤)) → (𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤)) | 
| 47 |  | pm5.5 361 | . . . . . . . . . . 11
⊢ (𝑋 ≤ 𝑋 → ((𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤) ↔ 𝑋 ≤ 𝑤)) | 
| 48 | 12, 47 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤) ↔ 𝑋 ≤ 𝑤)) | 
| 49 |  | breq1 5146 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤)) | 
| 50 | 49 | bicomd 223 | . . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑋 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤)) | 
| 51 | 48, 50 | sylan9bb 509 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤) ↔ 𝑥 ≤ 𝑤)) | 
| 52 | 46, 51 | imbitrid 244 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤)) → 𝑥 ≤ 𝑤)) | 
| 53 | 43, 52 | mpand 695 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) | 
| 54 | 53 | ralrimivw 3150 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) | 
| 55 | 54 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) | 
| 56 | 42, 55 | jca 511 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤))) | 
| 57 | 56 | ex 412 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 = 𝑋 → (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)))) | 
| 58 | 38, 57 | impbid 212 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥) ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ 𝐵 (𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤) → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) | 
| 59 | 6, 58 | bitrid 283 | 1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |