| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpo0v | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) (Proof shortened by AV, 27-Jan-2024.) |
| Ref | Expression |
|---|---|
| mpo0v | ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ∅ = ∅ | |
| 2 | 1 | orci 865 | . 2 ⊢ (∅ = ∅ ∨ 𝐵 = ∅) |
| 3 | 0mpo0 7429 | . 2 ⊢ ((∅ = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∅c0 4280 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-nul 4281 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |