MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpo0v Structured version   Visualization version   GIF version

Theorem mpo0v 7359
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) (Proof shortened by AV, 27-Jan-2024.)
Assertion
Ref Expression
mpo0v (𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
Distinct variable groups:   𝑥,𝐵   𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpo0v
StepHypRef Expression
1 eqid 2738 . . 3 ∅ = ∅
21orci 862 . 2 (∅ = ∅ ∨ 𝐵 = ∅)
3 0mpo0 7358 . 2 ((∅ = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅)
42, 3ax-mp 5 1 (𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1539  c0 4256  cmpo 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-dif 3890  df-nul 4257  df-oprab 7279  df-mpo 7280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator