Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpo0v | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) (Proof shortened by AV, 27-Jan-2024.) |
Ref | Expression |
---|---|
mpo0v | ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∅ = ∅ | |
2 | 1 | orci 862 | . 2 ⊢ (∅ = ∅ ∨ 𝐵 = ∅) |
3 | 0mpo0 7358 | . 2 ⊢ ((∅ = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1539 ∅c0 4256 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-dif 3890 df-nul 4257 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |