Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpo0v | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) (Proof shortened by AV, 27-Jan-2024.) |
Ref | Expression |
---|---|
mpo0v | ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ ∅ = ∅ | |
2 | 1 | orci 863 | . 2 ⊢ (∅ = ∅ ∨ 𝐵 = ∅) |
3 | 0mpo0 7424 | . 2 ⊢ ((∅ = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1541 ∅c0 4273 ∈ cmpo 7343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-dif 3904 df-nul 4274 df-oprab 7345 df-mpo 7346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |