![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpo0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. In this version of mpo0v 7495, the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
mpo0 | ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7416 | . 2 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | df-oprab 7415 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))} | |
3 | noel 4330 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | simprll 777 | . . . . . . 7 ⊢ ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) → 𝑥 ∈ ∅) | |
5 | 3, 4 | mto 196 | . . . . . 6 ⊢ ¬ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
6 | 5 | nex 1802 | . . . . 5 ⊢ ¬ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
7 | 6 | nex 1802 | . . . 4 ⊢ ¬ ∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
8 | 7 | nex 1802 | . . 3 ⊢ ¬ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
9 | 8 | abf 4402 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))} = ∅ |
10 | 1, 2, 9 | 3eqtri 2764 | 1 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∅c0 4322 ⟨cop 4634 {coprab 7412 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-dif 3951 df-nul 4323 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: coafval 18016 d0mat2pmat 22247 |
Copyright terms: Public domain | W3C validator |