| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpo0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. In this version of mpo0v 7496, the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| mpo0 | ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7415 | . 2 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | df-oprab 7414 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))} | |
| 3 | noel 4318 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | simprll 778 | . . . . . . 7 ⊢ ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) → 𝑥 ∈ ∅) | |
| 5 | 3, 4 | mto 197 | . . . . . 6 ⊢ ¬ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
| 6 | 5 | nex 1800 | . . . . 5 ⊢ ¬ ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
| 7 | 6 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
| 8 | 7 | nex 1800 | . . 3 ⊢ ¬ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
| 9 | 8 | abf 4386 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))} = ∅ |
| 10 | 1, 2, 9 | 3eqtri 2763 | 1 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∅c0 4313 〈cop 4612 {coprab 7411 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-dif 3934 df-nul 4314 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: coafval 18082 d0mat2pmat 22681 |
| Copyright terms: Public domain | W3C validator |