![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpteq1df | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1df.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq1df.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
mpteq1df | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1df.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq1df.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eqidd 2733 | . 2 ⊢ (𝜑 → 𝐶 = 𝐶) | |
4 | 1, 2, 3 | mpteq12df 5234 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Ⅎwnf 1785 ↦ cmpt 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: smfliminflem 45536 |
Copyright terms: Public domain | W3C validator |