Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpteq1df Structured version   Visualization version   GIF version

Theorem mpteq1df 45227
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by SN, 11-Nov-2024.)
Hypotheses
Ref Expression
mpteq1df.1 𝑥𝜑
mpteq1df.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
mpteq1df (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))

Proof of Theorem mpteq1df
StepHypRef Expression
1 mpteq1df.1 . 2 𝑥𝜑
2 mpteq1df.2 . 2 (𝜑𝐴 = 𝐵)
3 eqidd 2737 . 2 (𝜑𝐶 = 𝐶)
41, 2, 3mpteq12df 5209 1 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnf 1783  cmpt 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-opab 5187  df-mpt 5207
This theorem is referenced by:  smfliminflem  46826
  Copyright terms: Public domain W3C validator