![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12df | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. Compare mpteq12dv 5239. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq12df.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq12df.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12df.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12df | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12df.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq12df.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | mpteq12df.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
5 | 1, 2, 4 | mpteq12da 5233 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ↦ cmpt 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: esumrnmpt2 33531 exrecfnlem 36726 mpteq1df 44399 smflimmpt 45987 |
Copyright terms: Public domain | W3C validator |