| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12df | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. Compare mpteq12dv 5212. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq12df.1 | ⊢ Ⅎ𝑥𝜑 |
| mpteq12df.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12df.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12df | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12df.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq12df.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | mpteq12df.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| 5 | 1, 2, 4 | mpteq12da 5208 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ↦ cmpt 5206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-opab 5187 df-mpt 5207 |
| This theorem is referenced by: esumrnmpt2 34104 exrecfnlem 37402 mpteq1df 45227 smflimmpt 46806 |
| Copyright terms: Public domain | W3C validator |