![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12df | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. Compare mpteq12dv 5239. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq12df.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq12df.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12df.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12df | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12df.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq12df.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | mpteq12df.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
5 | 1, 2, 4 | mpteq12da 5233 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ↦ cmpt 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: esumrnmpt2 34049 exrecfnlem 37362 mpteq1df 45179 smflimmpt 46766 |
Copyright terms: Public domain | W3C validator |