|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mpteq12df | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. Compare mpteq12dv 5232. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| mpteq12df.1 | ⊢ Ⅎ𝑥𝜑 | 
| mpteq12df.2 | ⊢ (𝜑 → 𝐴 = 𝐶) | 
| mpteq12df.3 | ⊢ (𝜑 → 𝐵 = 𝐷) | 
| Ref | Expression | 
|---|---|
| mpteq12df | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpteq12df.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq12df.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | mpteq12df.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | 
| 5 | 1, 2, 4 | mpteq12da 5226 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ↦ cmpt 5224 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-opab 5205 df-mpt 5225 | 
| This theorem is referenced by: esumrnmpt2 34070 exrecfnlem 37381 mpteq1df 45246 smflimmpt 46830 | 
| Copyright terms: Public domain | W3C validator |