Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptd2f Structured version   Visualization version   GIF version

Theorem fmptd2f 45142
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptd2f.1 𝑥𝜑
fmptd2f.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmptd2f (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fmptd2f
StepHypRef Expression
1 fmptd2f.1 . 2 𝑥𝜑
2 fmptd2f.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
3 eqid 2740 . 2 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
41, 2, 3fmptdf 7151 1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1781  wcel 2108  cmpt 5249  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  climinf2mpt  45635  climinfmpt  45636  limsupvaluzmpt  45638  limsupre2mpt  45651  limsupre3mpt  45655  limsupreuzmpt  45660  supcnvlimsupmpt  45662  liminfvalxrmpt  45707  liminflbuz2  45736  sge0z  46296  smfsupmpt  46736  smflimsupmpt  46750  smfliminfmpt  46753  smfsupdmmbllem  46765  smfinfdmmbllem  46769
  Copyright terms: Public domain W3C validator