Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptd2f Structured version   Visualization version   GIF version

Theorem fmptd2f 42778
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptd2f.1 𝑥𝜑
fmptd2f.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmptd2f (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fmptd2f
StepHypRef Expression
1 fmptd2f.1 . 2 𝑥𝜑
2 fmptd2f.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
3 eqid 2738 . 2 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
41, 2, 3fmptdf 6991 1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  cmpt 5157  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  climinf2mpt  43255  climinfmpt  43256  limsupvaluzmpt  43258  limsupre2mpt  43271  limsupre3mpt  43275  limsupreuzmpt  43280  supcnvlimsupmpt  43282  liminfvalxrmpt  43327  liminflbuz2  43356  sge0z  43913  smfsupmpt  44348  smflimsupmpt  44362  smfliminfmpt  44365
  Copyright terms: Public domain W3C validator