Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptd2f Structured version   Visualization version   GIF version

Theorem fmptd2f 43114
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptd2f.1 𝑥𝜑
fmptd2f.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmptd2f (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fmptd2f
StepHypRef Expression
1 fmptd2f.1 . 2 𝑥𝜑
2 fmptd2f.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
3 eqid 2736 . 2 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
41, 2, 3fmptdf 7047 1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1784  wcel 2105  cmpt 5175  wf 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-fun 6481  df-fn 6482  df-f 6483
This theorem is referenced by:  climinf2mpt  43599  climinfmpt  43600  limsupvaluzmpt  43602  limsupre2mpt  43615  limsupre3mpt  43619  limsupreuzmpt  43624  supcnvlimsupmpt  43626  liminfvalxrmpt  43671  liminflbuz2  43700  sge0z  44258  smfsupmpt  44698  smflimsupmpt  44712  smfliminfmpt  44715
  Copyright terms: Public domain W3C validator