Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptd2f Structured version   Visualization version   GIF version

Theorem fmptd2f 45236
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptd2f.1 𝑥𝜑
fmptd2f.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmptd2f (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fmptd2f
StepHypRef Expression
1 fmptd2f.1 . 2 𝑥𝜑
2 fmptd2f.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
3 eqid 2730 . 2 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
41, 2, 3fmptdf 7092 1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  cmpt 5191  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  climinf2mpt  45719  climinfmpt  45720  limsupvaluzmpt  45722  limsupre2mpt  45735  limsupre3mpt  45739  limsupreuzmpt  45744  supcnvlimsupmpt  45746  liminfvalxrmpt  45791  liminflbuz2  45820  dvnprodlem1  45951  sge0z  46380  sge0f1o  46387  smfsupmpt  46820  smfinfmpt  46824  smflimsupmpt  46834  smfliminfmpt  46837  smfsupdmmbllem  46849  smfinfdmmbllem  46853
  Copyright terms: Public domain W3C validator