| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptd2f | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fmptd2f.1 | ⊢ Ⅎ𝑥𝜑 |
| fmptd2f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmptd2f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptd2f.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fmptd2f.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | eqid 2729 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 1, 2, 3 | fmptdf 7071 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ↦ cmpt 5183 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: climinf2mpt 45685 climinfmpt 45686 limsupvaluzmpt 45688 limsupre2mpt 45701 limsupre3mpt 45705 limsupreuzmpt 45710 supcnvlimsupmpt 45712 liminfvalxrmpt 45757 liminflbuz2 45786 dvnprodlem1 45917 sge0z 46346 sge0f1o 46353 smfsupmpt 46786 smfinfmpt 46790 smflimsupmpt 46800 smfliminfmpt 46803 smfsupdmmbllem 46815 smfinfdmmbllem 46819 |
| Copyright terms: Public domain | W3C validator |