Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminflem Structured version   Visualization version   GIF version

Theorem smfliminflem 46942
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminflem.m (𝜑𝑀 ∈ ℤ)
smfliminflem.z 𝑍 = (ℤ𝑀)
smfliminflem.s (𝜑𝑆 ∈ SAlg)
smfliminflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminflem.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminflem.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝑛,𝐹,𝑥   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfliminflem
StepHypRef Expression
1 smfliminflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smfliminflem.d . . . . . . . . . 10 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
4 ssrab2 4031 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
53, 4eqsstri 3978 . . . . . . . . 9 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
75, 6sselid 3929 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 smfliminflem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 eqid 2733 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
108, 9allbutfi 45505 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
117, 10sylib 218 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
1211adantl 481 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
13 nfv 1915 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍)
14 nfra1 3258 . . . . . . . . . 10 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)
1513, 14nfan 1900 . . . . . . . . 9 𝑚((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
168fvexi 6845 . . . . . . . . . 10 𝑍 ∈ V
1716a1i 11 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑍 ∈ V)
188eluzelz2 45515 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ ℤ)
1918zred 12587 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℝ)
2019ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑛 ∈ ℝ)
21 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝜑)
22 elinel1 4152 . . . . . . . . . . 11 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚𝑍)
23 smfliminflem.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
2423adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
25 smfliminflem.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2625ffvelcdmda 7026 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
27 eqid 2733 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
2824, 26, 27smff 46844 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
2921, 22, 28syl2an 596 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
30 simplr 768 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
31 eqid 2733 . . . . . . . . . . . . . 14 (ℤ𝑛) = (ℤ𝑛)
3218adantr 480 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℤ)
338, 22eluzelz2d 45525 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ ℤ)
3433adantl 481 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ ℤ)
3519rexrd 11172 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℝ*)
3635adantr 480 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℝ*)
37 pnfxr 11176 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
3837a1i 11 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → +∞ ∈ ℝ*)
39 elinel2 4153 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ (𝑛[,)+∞))
4039adantl 481 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (𝑛[,)+∞))
4136, 38, 40icogelbd 13307 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛𝑚)
4231, 32, 34, 41eluzd 45521 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
4342adantlr 715 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
44 rspa 3223 . . . . . . . . . . . 12 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐹𝑚))
4530, 43, 44syl2anc 584 . . . . . . . . . . 11 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4645adantlll 718 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4729, 46ffvelcdmd 7027 . . . . . . . . 9 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
4815, 17, 20, 47liminfval4 45901 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
4948rexlimdva2 3137 . . . . . . 7 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5049adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5112, 50mpd 15 . . . . 5 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5251xnegeqd 45549 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5316mptex 7166 . . . . . . . . . . . 12 (𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)) ∈ V
5453limsupcli 45869 . . . . . . . . . . 11 (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*
5554xnegnegi 45551 . . . . . . . . . 10 -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))
5655a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5752, 56eqtr2d 2769 . . . . . . . 8 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
583reqabi 3420 . . . . . . . . . . 11 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
5958simprbi 496 . . . . . . . . . 10 (𝑥𝐷 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6059adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6160rexnegd 45254 . . . . . . . 8 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6257, 61eqtr2d 2769 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6360renegcld 11554 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6462, 63eqeltrrd 2834 . . . . . 6 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
6564rexnegd 45254 . . . . 5 ((𝜑𝑥𝐷) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6651, 65eqtrd 2768 . . . 4 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6766mpteq2dva 5188 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
682, 67eqtrd 2768 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
69 nfv 1915 . . 3 𝑥𝜑
7018, 31uzn0d 45537 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
71 fvex 6844 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
7271dmex 7848 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
7372rgenw 3053 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
7473a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
75 iinexg 5290 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7670, 74, 75syl2anc 584 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7776rgen 3051 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
78 iunexg 7904 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7916, 77, 78mp2an 692 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
8079, 5ssexi 5264 . . . 4 𝐷 ∈ V
8180a1i 11 . . 3 (𝜑𝐷 ∈ V)
823a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
8310biimpi 216 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
8449imp 406 . . . . . . . . 9 ((𝜑 ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8583, 84sylan2 593 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8654a1i 11 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*)
87 simpl 482 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
88 simpr 484 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
8987, 88eqeltrrd 2834 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
90 xnegrecl2 45572 . . . . . . . . . 10 (((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ* ∧ -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9186, 89, 90syl2anc 584 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
92 simpl 482 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
93 xnegrecl 45550 . . . . . . . . . . 11 ((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9493adantl 481 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9592, 94eqeltrd 2833 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
9691, 95impbida 800 . . . . . . . 8 ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9785, 96syl 17 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9897rabbidva 3403 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
9982, 98eqtrd 2768 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
10069, 99mpteq1df 45347 . . . 4 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
101 nfv 1915 . . . . 5 𝑚𝜑
102 nfv 1915 . . . . 5 𝑛𝜑
103 smfliminflem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
104 negex 11368 . . . . . 6 -((𝐹𝑚)‘𝑥) ∈ V
105104a1i 11 . . . . 5 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → -((𝐹𝑚)‘𝑥) ∈ V)
106 nfv 1915 . . . . . 6 𝑥(𝜑𝑚𝑍)
10772a1i 11 . . . . . 6 ((𝜑𝑚𝑍) → dom (𝐹𝑚) ∈ V)
10828ffvelcdmda 7026 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
10928feqmptd 6899 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)))
110109, 26eqeltrrd 2834 . . . . . 6 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
111106, 24, 107, 108, 110smfneg 46915 . . . . 5 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ -((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
112 eqid 2733 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ}
113 eqid 2733 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
114101, 69, 102, 103, 8, 23, 105, 111, 112, 113smflimsupmpt 46941 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
115100, 114eqeltrd 2833 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11669, 23, 81, 64, 115smfneg 46915 . 2 (𝜑 → (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11768, 116eqeltrd 2833 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  {crab 3397  Vcvv 3438  cin 3898  c0 4284   ciun 4943   ciin 4944  cmpt 5176  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  cr 11015  +∞cpnf 11153  *cxr 11155  -cneg 11355  cz 12478  cuz 12742  -𝑒cxne 13018  [,)cico 13257  lim supclsp 15387  lim infclsi 45863  SAlgcsalg 46420  SMblFncsmblfn 46807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-ceil 13707  df-seq 13919  df-exp 13979  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-s2 14765  df-s3 14766  df-s4 14767  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-rest 17336  df-topgen 17357  df-top 22819  df-bases 22871  df-liminf 45864  df-salg 46421  df-salgen 46425  df-smblfn 46808
This theorem is referenced by:  smfliminf  46943
  Copyright terms: Public domain W3C validator