Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminflem Structured version   Visualization version   GIF version

Theorem smfliminflem 42533
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminflem.m (𝜑𝑀 ∈ ℤ)
smfliminflem.z 𝑍 = (ℤ𝑀)
smfliminflem.s (𝜑𝑆 ∈ SAlg)
smfliminflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminflem.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminflem.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝑛,𝐹,𝑥   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfliminflem
StepHypRef Expression
1 smfliminflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smfliminflem.d . . . . . . . . . 10 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
4 ssrab2 3947 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
53, 4eqsstri 3892 . . . . . . . . 9 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
75, 6sseldi 3857 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 smfliminflem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 eqid 2779 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
108, 9allbutfi 41093 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
117, 10sylib 210 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
1211adantl 474 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
13 nfv 1873 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍)
14 nfra1 3170 . . . . . . . . . 10 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)
1513, 14nfan 1862 . . . . . . . . 9 𝑚((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
168fvexi 6513 . . . . . . . . . 10 𝑍 ∈ V
1716a1i 11 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑍 ∈ V)
188eluzelz2 41104 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ ℤ)
1918zred 11900 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℝ)
2019ad2antlr 714 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑛 ∈ ℝ)
21 simpll 754 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝜑)
22 elinel1 4061 . . . . . . . . . . 11 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚𝑍)
23 smfliminflem.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
2423adantr 473 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
25 smfliminflem.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2625ffvelrnda 6676 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
27 eqid 2779 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
2824, 26, 27smff 42438 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
2921, 22, 28syl2an 586 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
30 simplr 756 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
31 eqid 2779 . . . . . . . . . . . . . 14 (ℤ𝑛) = (ℤ𝑛)
3218adantr 473 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℤ)
338, 22eluzelz2d 41116 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ ℤ)
3433adantl 474 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ ℤ)
3519rexrd 10490 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℝ*)
3635adantr 473 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℝ*)
37 pnfxr 10494 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
3837a1i 11 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → +∞ ∈ ℝ*)
39 elinel2 4062 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ (𝑛[,)+∞))
4039adantl 474 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (𝑛[,)+∞))
4136, 38, 40icogelbd 41263 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛𝑚)
4231, 32, 34, 41eluzd 41111 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
4342adantlr 702 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
44 rspa 3157 . . . . . . . . . . . 12 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐹𝑚))
4530, 43, 44syl2anc 576 . . . . . . . . . . 11 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4645adantlll 705 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4729, 46ffvelrnd 6677 . . . . . . . . 9 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
4815, 17, 20, 47liminfval4 41499 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
4948rexlimdva2 3233 . . . . . . 7 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5049adantr 473 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5112, 50mpd 15 . . . . 5 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5251xnegeqd 41140 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5316mptex 6812 . . . . . . . . . . . 12 (𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)) ∈ V
5453limsupcli 41467 . . . . . . . . . . 11 (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*
5554xnegnegi 41142 . . . . . . . . . 10 -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))
5655a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5752, 56eqtr2d 2816 . . . . . . . 8 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
583rabeq2i 3411 . . . . . . . . . . 11 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
5958simprbi 489 . . . . . . . . . 10 (𝑥𝐷 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6059adantl 474 . . . . . . . . 9 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6160rexnegd 40832 . . . . . . . 8 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6257, 61eqtr2d 2816 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6360renegcld 10868 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6462, 63eqeltrrd 2868 . . . . . 6 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
6564rexnegd 40832 . . . . 5 ((𝜑𝑥𝐷) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6651, 65eqtrd 2815 . . . 4 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6766mpteq2dva 5022 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
682, 67eqtrd 2815 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
69 nfv 1873 . . 3 𝑥𝜑
7018, 31uzn0d 41128 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
71 fvex 6512 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
7271dmex 7431 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
7372rgenw 3101 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
7473a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
75 iinexg 5100 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7670, 74, 75syl2anc 576 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7776rgen 3099 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
78 iunexg 7476 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7916, 77, 78mp2an 679 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
8079, 5ssexi 5082 . . . 4 𝐷 ∈ V
8180a1i 11 . . 3 (𝜑𝐷 ∈ V)
823a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
8310biimpi 208 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
8449imp 398 . . . . . . . . 9 ((𝜑 ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8583, 84sylan2 583 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8654a1i 11 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*)
87 simpl 475 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
88 simpr 477 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
8987, 88eqeltrrd 2868 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
90 xnegrecl2 41165 . . . . . . . . . 10 (((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ* ∧ -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9186, 89, 90syl2anc 576 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
92 simpl 475 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
93 xnegrecl 41141 . . . . . . . . . . 11 ((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9493adantl 474 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9592, 94eqeltrd 2867 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
9691, 95impbida 788 . . . . . . . 8 ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9785, 96syl 17 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9897rabbidva 3403 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
9982, 98eqtrd 2815 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
10069, 99mpteq1df 40931 . . . 4 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
101 nfv 1873 . . . . 5 𝑚𝜑
102 nfv 1873 . . . . 5 𝑛𝜑
103 smfliminflem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
104 negex 10684 . . . . . 6 -((𝐹𝑚)‘𝑥) ∈ V
105104a1i 11 . . . . 5 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → -((𝐹𝑚)‘𝑥) ∈ V)
106 nfv 1873 . . . . . 6 𝑥(𝜑𝑚𝑍)
10772a1i 11 . . . . . 6 ((𝜑𝑚𝑍) → dom (𝐹𝑚) ∈ V)
10828ffvelrnda 6676 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
10928feqmptd 6562 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)))
110109, 26eqeltrrd 2868 . . . . . 6 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
111106, 24, 107, 108, 110smfneg 42507 . . . . 5 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ -((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
112 eqid 2779 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ}
113 eqid 2779 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
114101, 69, 102, 103, 8, 23, 105, 111, 112, 113smflimsupmpt 42532 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
115100, 114eqeltrd 2867 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11669, 23, 81, 64, 115smfneg 42507 . 2 (𝜑 → (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11768, 116eqeltrd 2867 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2968  wral 3089  wrex 3090  {crab 3093  Vcvv 3416  cin 3829  c0 4179   ciun 4792   ciin 4793  cmpt 5008  dom cdm 5407  wf 6184  cfv 6188  (class class class)co 6976  cr 10334  +∞cpnf 10471  *cxr 10473  -cneg 10671  cz 11793  cuz 12058  -𝑒cxne 12321  [,)cico 12556  lim supclsp 14688  lim infclsi 41461  SAlgcsalg 42022  SMblFncsmblfn 42406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-ac2 9683  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-omul 7910  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-acn 9165  df-ac 9336  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-ioo 12558  df-ioc 12559  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-ceil 12978  df-seq 13185  df-exp 13245  df-hash 13506  df-word 13673  df-concat 13734  df-s1 13759  df-s2 14072  df-s3 14073  df-s4 14074  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-rest 16552  df-topgen 16573  df-top 21206  df-bases 21258  df-liminf 41462  df-salg 42023  df-salgen 42027  df-smblfn 42407
This theorem is referenced by:  smfliminf  42534
  Copyright terms: Public domain W3C validator