Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminflem Structured version   Visualization version   GIF version

Theorem smfliminflem 46451
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminflem.m (𝜑𝑀 ∈ ℤ)
smfliminflem.z 𝑍 = (ℤ𝑀)
smfliminflem.s (𝜑𝑆 ∈ SAlg)
smfliminflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminflem.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminflem.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝑛,𝐹,𝑥   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfliminflem
StepHypRef Expression
1 smfliminflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smfliminflem.d . . . . . . . . . 10 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
4 ssrab2 4076 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
53, 4eqsstri 4014 . . . . . . . . 9 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
75, 6sselid 3977 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 smfliminflem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 eqid 2726 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
108, 9allbutfi 45008 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
117, 10sylib 217 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
1211adantl 480 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
13 nfv 1910 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍)
14 nfra1 3272 . . . . . . . . . 10 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)
1513, 14nfan 1895 . . . . . . . . 9 𝑚((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
168fvexi 6915 . . . . . . . . . 10 𝑍 ∈ V
1716a1i 11 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑍 ∈ V)
188eluzelz2 45018 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ ℤ)
1918zred 12718 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℝ)
2019ad2antlr 725 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑛 ∈ ℝ)
21 simpll 765 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝜑)
22 elinel1 4196 . . . . . . . . . . 11 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚𝑍)
23 smfliminflem.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
2423adantr 479 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
25 smfliminflem.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2625ffvelcdmda 7098 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
27 eqid 2726 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
2824, 26, 27smff 46353 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
2921, 22, 28syl2an 594 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
30 simplr 767 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
31 eqid 2726 . . . . . . . . . . . . . 14 (ℤ𝑛) = (ℤ𝑛)
3218adantr 479 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℤ)
338, 22eluzelz2d 45028 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ ℤ)
3433adantl 480 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ ℤ)
3519rexrd 11314 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℝ*)
3635adantr 479 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℝ*)
37 pnfxr 11318 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
3837a1i 11 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → +∞ ∈ ℝ*)
39 elinel2 4197 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ (𝑛[,)+∞))
4039adantl 480 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (𝑛[,)+∞))
4136, 38, 40icogelbd 45176 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛𝑚)
4231, 32, 34, 41eluzd 45024 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
4342adantlr 713 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
44 rspa 3236 . . . . . . . . . . . 12 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐹𝑚))
4530, 43, 44syl2anc 582 . . . . . . . . . . 11 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4645adantlll 716 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4729, 46ffvelcdmd 7099 . . . . . . . . 9 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
4815, 17, 20, 47liminfval4 45410 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
4948rexlimdva2 3147 . . . . . . 7 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5049adantr 479 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5112, 50mpd 15 . . . . 5 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5251xnegeqd 45052 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5316mptex 7240 . . . . . . . . . . . 12 (𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)) ∈ V
5453limsupcli 45378 . . . . . . . . . . 11 (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*
5554xnegnegi 45054 . . . . . . . . . 10 -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))
5655a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5752, 56eqtr2d 2767 . . . . . . . 8 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
583reqabi 3442 . . . . . . . . . . 11 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
5958simprbi 495 . . . . . . . . . 10 (𝑥𝐷 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6059adantl 480 . . . . . . . . 9 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6160rexnegd 44744 . . . . . . . 8 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6257, 61eqtr2d 2767 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6360renegcld 11691 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6462, 63eqeltrrd 2827 . . . . . 6 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
6564rexnegd 44744 . . . . 5 ((𝜑𝑥𝐷) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6651, 65eqtrd 2766 . . . 4 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6766mpteq2dva 5253 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
682, 67eqtrd 2766 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
69 nfv 1910 . . 3 𝑥𝜑
7018, 31uzn0d 45040 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
71 fvex 6914 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
7271dmex 7922 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
7372rgenw 3055 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
7473a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
75 iinexg 5348 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7670, 74, 75syl2anc 582 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7776rgen 3053 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
78 iunexg 7977 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7916, 77, 78mp2an 690 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
8079, 5ssexi 5327 . . . 4 𝐷 ∈ V
8180a1i 11 . . 3 (𝜑𝐷 ∈ V)
823a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
8310biimpi 215 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
8449imp 405 . . . . . . . . 9 ((𝜑 ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8583, 84sylan2 591 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8654a1i 11 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*)
87 simpl 481 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
88 simpr 483 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
8987, 88eqeltrrd 2827 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
90 xnegrecl2 45075 . . . . . . . . . 10 (((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ* ∧ -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9186, 89, 90syl2anc 582 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
92 simpl 481 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
93 xnegrecl 45053 . . . . . . . . . . 11 ((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9493adantl 480 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9592, 94eqeltrd 2826 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
9691, 95impbida 799 . . . . . . . 8 ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9785, 96syl 17 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9897rabbidva 3426 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
9982, 98eqtrd 2766 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
10069, 99mpteq1df 44843 . . . 4 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
101 nfv 1910 . . . . 5 𝑚𝜑
102 nfv 1910 . . . . 5 𝑛𝜑
103 smfliminflem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
104 negex 11508 . . . . . 6 -((𝐹𝑚)‘𝑥) ∈ V
105104a1i 11 . . . . 5 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → -((𝐹𝑚)‘𝑥) ∈ V)
106 nfv 1910 . . . . . 6 𝑥(𝜑𝑚𝑍)
10772a1i 11 . . . . . 6 ((𝜑𝑚𝑍) → dom (𝐹𝑚) ∈ V)
10828ffvelcdmda 7098 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
10928feqmptd 6971 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)))
110109, 26eqeltrrd 2827 . . . . . 6 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
111106, 24, 107, 108, 110smfneg 46424 . . . . 5 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ -((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
112 eqid 2726 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ}
113 eqid 2726 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
114101, 69, 102, 103, 8, 23, 105, 111, 112, 113smflimsupmpt 46450 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
115100, 114eqeltrd 2826 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11669, 23, 81, 64, 115smfneg 46424 . 2 (𝜑 → (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11768, 116eqeltrd 2826 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  cin 3946  c0 4325   ciun 5001   ciin 5002  cmpt 5236  dom cdm 5682  wf 6550  cfv 6554  (class class class)co 7424  cr 11157  +∞cpnf 11295  *cxr 11297  -cneg 11495  cz 12610  cuz 12874  -𝑒cxne 13143  [,)cico 13380  lim supclsp 15472  lim infclsi 45372  SAlgcsalg 45929  SMblFncsmblfn 46316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cc 10478  ax-ac2 10506  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-acn 9985  df-ac 10159  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-ceil 13813  df-seq 14022  df-exp 14082  df-hash 14348  df-word 14523  df-concat 14579  df-s1 14604  df-s2 14857  df-s3 14858  df-s4 14859  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-rest 17437  df-topgen 17458  df-top 22887  df-bases 22940  df-liminf 45373  df-salg 45930  df-salgen 45934  df-smblfn 46317
This theorem is referenced by:  smfliminf  46452
  Copyright terms: Public domain W3C validator