Proof of Theorem smfliminflem
Step | Hyp | Ref
| Expression |
1 | | smfliminflem.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))))) |
3 | | smfliminflem.d |
. . . . . . . . . 10
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
4 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
5 | 3, 4 | eqsstri 3951 |
. . . . . . . . 9
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
6 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐷) |
7 | 5, 6 | sselid 3915 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
8 | | smfliminflem.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
10 | 8, 9 | allbutfi 42823 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) |
11 | 7, 10 | sylib 217 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) |
12 | 11 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) |
13 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
14 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑚∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚) |
15 | 13, 14 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑚((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) |
16 | 8 | fvexi 6770 |
. . . . . . . . . 10
⊢ 𝑍 ∈ V |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) → 𝑍 ∈ V) |
18 | 8 | eluzelz2 42833 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
19 | 18 | zred 12355 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℝ) |
20 | 19 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) → 𝑛 ∈ ℝ) |
21 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) → 𝜑) |
22 | | elinel1 4125 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ 𝑍) |
23 | | smfliminflem.s |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ SAlg) |
24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑆 ∈ SAlg) |
25 | | smfliminflem.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
26 | 25 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
28 | 24, 26, 27 | smff 44155 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
29 | 21, 22, 28 | syl2an 595 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
30 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ∀𝑚 ∈
(ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) |
31 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
32 | 18 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℤ) |
33 | 8, 22 | eluzelz2d 42843 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ ℤ) |
34 | 33 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ ℤ) |
35 | 19 | rexrd 10956 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℝ*) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℝ*) |
37 | | pnfxr 10960 |
. . . . . . . . . . . . . . . 16
⊢ +∞
∈ ℝ* |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → +∞ ∈
ℝ*) |
39 | | elinel2 4126 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ (𝑛[,)+∞)) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (𝑛[,)+∞)) |
41 | 36, 38, 40 | icogelbd 42986 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ≤ 𝑚) |
42 | 31, 32, 34, 41 | eluzd 42839 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ≥‘𝑛)) |
43 | 42 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ≥‘𝑛)) |
44 | | rspa 3130 |
. . . . . . . . . . . 12
⊢
((∀𝑚 ∈
(ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ dom (𝐹‘𝑚)) |
45 | 30, 43, 44 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹‘𝑚)) |
46 | 45 | adantlll 714 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹‘𝑚)) |
47 | 29, 46 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ((𝐹‘𝑚)‘𝑥) ∈ ℝ) |
48 | 15, 17, 20, 47 | liminfval4 43220 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
49 | 48 | rexlimdva2 3215 |
. . . . . . 7
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))))) |
50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))))) |
51 | 12, 50 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
52 | 51 | xnegeqd 42867 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → -𝑒(lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) =
-𝑒-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
53 | 16 | mptex 7081 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)) ∈ V |
54 | 53 | limsupcli 43188 |
. . . . . . . . . . 11
⊢ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈
ℝ* |
55 | 54 | xnegnegi 42869 |
. . . . . . . . . 10
⊢
-𝑒-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) |
56 | 55 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) →
-𝑒-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
57 | 52, 56 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
58 | 3 | rabeq2i 3412 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ)) |
59 | 58 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
60 | 59 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
61 | 60 | rexnegd 42581 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → -𝑒(lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -(lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
62 | 57, 61 | eqtr2d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → -(lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
63 | 60 | renegcld 11332 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → -(lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
64 | 62, 63 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
65 | 64 | rexnegd 42581 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) = -(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
66 | 51, 65 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
67 | 66 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑥 ∈ 𝐷 ↦ -(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))))) |
68 | 2, 67 | eqtrd 2778 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ -(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))))) |
69 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑥𝜑 |
70 | 18, 31 | uzn0d 42855 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
71 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑚) ∈ V |
72 | 71 | dmex 7732 |
. . . . . . . . . 10
⊢ dom
(𝐹‘𝑚) ∈ V |
73 | 72 | rgenw 3075 |
. . . . . . . . 9
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
74 | 73 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
75 | | iinexg 5260 |
. . . . . . . 8
⊢
(((ℤ≥‘𝑛) ≠ ∅ ∧ ∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
76 | 70, 74, 75 | syl2anc 583 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
77 | 76 | rgen 3073 |
. . . . . 6
⊢
∀𝑛 ∈
𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
78 | | iunexg 7779 |
. . . . . 6
⊢ ((𝑍 ∈ V ∧ ∀𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
79 | 16, 77, 78 | mp2an 688 |
. . . . 5
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
80 | 79, 5 | ssexi 5241 |
. . . 4
⊢ 𝐷 ∈ V |
81 | 80 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐷 ∈ V) |
82 | 3 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) |
83 | 10 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) |
84 | 49 | imp 406 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐹‘𝑚)) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
85 | 83, 84 | sylan2 592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
86 | 54 | a1i 11 |
. . . . . . . . . 10
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈
ℝ*) |
87 | | simpl 482 |
. . . . . . . . . . 11
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
88 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
89 | 87, 88 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) →
-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
90 | | xnegrecl2 42890 |
. . . . . . . . . 10
⊢ (((lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ* ∧
-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
91 | 86, 89, 90 | syl2anc 583 |
. . . . . . . . 9
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
92 | | simpl 482 |
. . . . . . . . . 10
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
93 | | xnegrecl 42868 |
. . . . . . . . . . 11
⊢ ((lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ →
-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
94 | 93 | adantl 481 |
. . . . . . . . . 10
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) →
-𝑒(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
95 | 92, 94 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
96 | 91, 95 | impbida 797 |
. . . . . . . 8
⊢ ((lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = -𝑒(lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) → ((lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ ↔ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ)) |
97 | 85, 96 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ((lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ ↔ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ)) |
98 | 97 | rabbidva 3402 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) |
99 | 82, 98 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) |
100 | 69, 99 | mpteq1df 42668 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))))) |
101 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑚𝜑 |
102 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑛𝜑 |
103 | | smfliminflem.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
104 | | negex 11149 |
. . . . . 6
⊢ -((𝐹‘𝑚)‘𝑥) ∈ V |
105 | 104 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom (𝐹‘𝑚)) → -((𝐹‘𝑚)‘𝑥) ∈ V) |
106 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑚 ∈ 𝑍) |
107 | 72 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → dom (𝐹‘𝑚) ∈ V) |
108 | 28 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑥 ∈ dom (𝐹‘𝑚)) → ((𝐹‘𝑚)‘𝑥) ∈ ℝ) |
109 | 28 | feqmptd 6819 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) = (𝑥 ∈ dom (𝐹‘𝑚) ↦ ((𝐹‘𝑚)‘𝑥))) |
110 | 109, 26 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ dom (𝐹‘𝑚) ↦ ((𝐹‘𝑚)‘𝑥)) ∈ (SMblFn‘𝑆)) |
111 | 106, 24, 107, 108, 110 | smfneg 44224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ dom (𝐹‘𝑚) ↦ -((𝐹‘𝑚)‘𝑥)) ∈ (SMblFn‘𝑆)) |
112 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
113 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) |
114 | 101, 69, 102, 103, 8, 23, 105, 111, 112, 113 | smflimsupmpt 44249 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆)) |
115 | 100, 114 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆)) |
116 | 69, 23, 81, 64, 115 | smfneg 44224 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ -(lim sup‘(𝑚 ∈ 𝑍 ↦ -((𝐹‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆)) |
117 | 68, 116 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |