Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminflem Structured version   Visualization version   GIF version

Theorem smfliminflem 43448
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminflem.m (𝜑𝑀 ∈ ℤ)
smfliminflem.z 𝑍 = (ℤ𝑀)
smfliminflem.s (𝜑𝑆 ∈ SAlg)
smfliminflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminflem.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminflem.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝑛,𝐹,𝑥   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfliminflem
StepHypRef Expression
1 smfliminflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smfliminflem.d . . . . . . . . . 10 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
4 ssrab2 4010 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
53, 4eqsstri 3952 . . . . . . . . 9 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
75, 6sseldi 3916 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 smfliminflem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 eqid 2801 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
108, 9allbutfi 42016 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
117, 10sylib 221 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
1211adantl 485 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
13 nfv 1915 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍)
14 nfra1 3186 . . . . . . . . . 10 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)
1513, 14nfan 1900 . . . . . . . . 9 𝑚((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
168fvexi 6663 . . . . . . . . . 10 𝑍 ∈ V
1716a1i 11 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑍 ∈ V)
188eluzelz2 42027 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ ℤ)
1918zred 12079 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℝ)
2019ad2antlr 726 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑛 ∈ ℝ)
21 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝜑)
22 elinel1 4125 . . . . . . . . . . 11 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚𝑍)
23 smfliminflem.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
2423adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
25 smfliminflem.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2625ffvelrnda 6832 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
27 eqid 2801 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
2824, 26, 27smff 43353 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
2921, 22, 28syl2an 598 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
30 simplr 768 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
31 eqid 2801 . . . . . . . . . . . . . 14 (ℤ𝑛) = (ℤ𝑛)
3218adantr 484 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℤ)
338, 22eluzelz2d 42037 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ ℤ)
3433adantl 485 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ ℤ)
3519rexrd 10684 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℝ*)
3635adantr 484 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℝ*)
37 pnfxr 10688 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
3837a1i 11 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → +∞ ∈ ℝ*)
39 elinel2 4126 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ (𝑛[,)+∞))
4039adantl 485 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (𝑛[,)+∞))
4136, 38, 40icogelbd 42182 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛𝑚)
4231, 32, 34, 41eluzd 42033 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
4342adantlr 714 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
44 rspa 3174 . . . . . . . . . . . 12 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐹𝑚))
4530, 43, 44syl2anc 587 . . . . . . . . . . 11 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4645adantlll 717 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4729, 46ffvelrnd 6833 . . . . . . . . 9 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
4815, 17, 20, 47liminfval4 42418 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
4948rexlimdva2 3249 . . . . . . 7 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5049adantr 484 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5112, 50mpd 15 . . . . 5 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5251xnegeqd 42061 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5316mptex 6967 . . . . . . . . . . . 12 (𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)) ∈ V
5453limsupcli 42386 . . . . . . . . . . 11 (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*
5554xnegnegi 42063 . . . . . . . . . 10 -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))
5655a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5752, 56eqtr2d 2837 . . . . . . . 8 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
583rabeq2i 3438 . . . . . . . . . . 11 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
5958simprbi 500 . . . . . . . . . 10 (𝑥𝐷 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6059adantl 485 . . . . . . . . 9 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6160rexnegd 41767 . . . . . . . 8 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6257, 61eqtr2d 2837 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6360renegcld 11060 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6462, 63eqeltrrd 2894 . . . . . 6 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
6564rexnegd 41767 . . . . 5 ((𝜑𝑥𝐷) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6651, 65eqtrd 2836 . . . 4 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6766mpteq2dva 5128 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
682, 67eqtrd 2836 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
69 nfv 1915 . . 3 𝑥𝜑
7018, 31uzn0d 42049 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
71 fvex 6662 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
7271dmex 7602 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
7372rgenw 3121 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
7473a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
75 iinexg 5211 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7670, 74, 75syl2anc 587 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7776rgen 3119 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
78 iunexg 7650 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7916, 77, 78mp2an 691 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
8079, 5ssexi 5193 . . . 4 𝐷 ∈ V
8180a1i 11 . . 3 (𝜑𝐷 ∈ V)
823a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
8310biimpi 219 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
8449imp 410 . . . . . . . . 9 ((𝜑 ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8583, 84sylan2 595 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8654a1i 11 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*)
87 simpl 486 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
88 simpr 488 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
8987, 88eqeltrrd 2894 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
90 xnegrecl2 42086 . . . . . . . . . 10 (((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ* ∧ -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9186, 89, 90syl2anc 587 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
92 simpl 486 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
93 xnegrecl 42062 . . . . . . . . . . 11 ((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9493adantl 485 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9592, 94eqeltrd 2893 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
9691, 95impbida 800 . . . . . . . 8 ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9785, 96syl 17 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9897rabbidva 3428 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
9982, 98eqtrd 2836 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
10069, 99mpteq1df 41859 . . . 4 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
101 nfv 1915 . . . . 5 𝑚𝜑
102 nfv 1915 . . . . 5 𝑛𝜑
103 smfliminflem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
104 negex 10877 . . . . . 6 -((𝐹𝑚)‘𝑥) ∈ V
105104a1i 11 . . . . 5 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → -((𝐹𝑚)‘𝑥) ∈ V)
106 nfv 1915 . . . . . 6 𝑥(𝜑𝑚𝑍)
10772a1i 11 . . . . . 6 ((𝜑𝑚𝑍) → dom (𝐹𝑚) ∈ V)
10828ffvelrnda 6832 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
10928feqmptd 6712 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)))
110109, 26eqeltrrd 2894 . . . . . 6 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
111106, 24, 107, 108, 110smfneg 43422 . . . . 5 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ -((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
112 eqid 2801 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ}
113 eqid 2801 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
114101, 69, 102, 103, 8, 23, 105, 111, 112, 113smflimsupmpt 43447 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
115100, 114eqeltrd 2893 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11669, 23, 81, 64, 115smfneg 43422 . 2 (𝜑 → (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11768, 116eqeltrd 2893 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  Vcvv 3444  cin 3883  c0 4246   ciun 4884   ciin 4885  cmpt 5113  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  cr 10529  +∞cpnf 10665  *cxr 10667  -cneg 10864  cz 11973  cuz 12235  -𝑒cxne 12496  [,)cico 12732  lim supclsp 14822  lim infclsi 42380  SAlgcsalg 42937  SMblFncsmblfn 43321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-ceil 13162  df-seq 13369  df-exp 13430  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-s4 14207  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-rest 16691  df-topgen 16712  df-top 21502  df-bases 21554  df-liminf 42381  df-salg 42938  df-salgen 42942  df-smblfn 43322
This theorem is referenced by:  smfliminf  43449
  Copyright terms: Public domain W3C validator