Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpteq1dfOLD Structured version   Visualization version   GIF version

Theorem mpteq1dfOLD 45144
Description: Obsolete version of mpteq1df 45143 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mpteq1df.1 𝑥𝜑
mpteq1df.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
mpteq1dfOLD (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))

Proof of Theorem mpteq1dfOLD
StepHypRef Expression
1 mpteq1df.1 . . 3 𝑥𝜑
2 mpteq1df.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2alrimi 2214 . 2 (𝜑 → ∀𝑥 𝐴 = 𝐵)
4 eqid 2740 . . 3 𝐶 = 𝐶
54rgenw 3071 . 2 𝑥𝐴 𝐶 = 𝐶
6 mpteq12f 5254 . 2 ((∀𝑥 𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐶) → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
73, 5, 6sylancl 585 1 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wnf 1781  wral 3067  cmpt 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-opab 5229  df-mpt 5250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator