![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpteq1dfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mpteq1df 44238 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mpteq1df.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq1df.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
mpteq1dfOLD | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1df.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq1df.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | alrimi 2205 | . 2 ⊢ (𝜑 → ∀𝑥 𝐴 = 𝐵) |
4 | eqid 2731 | . . 3 ⊢ 𝐶 = 𝐶 | |
5 | 4 | rgenw 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶 |
6 | mpteq12f 5237 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
7 | 3, 5, 6 | sylancl 585 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 Ⅎwnf 1784 ∀wral 3060 ↦ cmpt 5232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-opab 5212 df-mpt 5233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |