Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0limd Structured version   Visualization version   GIF version

Theorem n0limd 32491
Description: Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
n0limd.1 (𝜑𝐴 ≠ ∅)
n0limd.2 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
n0limd (𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜓,𝑥

Proof of Theorem n0limd
StepHypRef Expression
1 n0limd.1 . . 3 (𝜑𝐴 ≠ ∅)
2 n0 4353 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
31, 2sylib 218 . 2 (𝜑 → ∃𝑥 𝑥𝐴)
4 n0limd.2 . 2 ((𝜑𝑥𝐴) → 𝜓)
53, 4exlimddv 1935 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wne 2940  c0 4333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-ne 2941  df-dif 3954  df-nul 4334
This theorem is referenced by:  dimlssid  33683  fldextrspunlem1  33725
  Copyright terms: Public domain W3C validator