| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reu6dv | Structured version Visualization version GIF version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| reu6d.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| reu6d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
| Ref | Expression |
|---|---|
| reu6dv | ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu6d.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | reu6d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
| 3 | 2 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵)) |
| 4 | reu6i 3716 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜓) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-reu 3364 |
| This theorem is referenced by: elrgspnsubrunlem1 33195 |
| Copyright terms: Public domain | W3C validator |