Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reu6dv Structured version   Visualization version   GIF version

Theorem reu6dv 32481
Description: A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
reu6d.1 (𝜑𝐵𝐴)
reu6d.2 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
Assertion
Ref Expression
reu6dv (𝜑 → ∃!𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reu6dv
StepHypRef Expression
1 reu6d.1 . 2 (𝜑𝐵𝐴)
2 reu6d.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
32ralrimiva 3145 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝐵))
4 reu6i 3733 . 2 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜓)
51, 3, 4syl2anc 584 1 (𝜑 → ∃!𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3060  ∃!wreu 3377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-reu 3380
This theorem is referenced by:  elrgspnsubrunlem1  33239
  Copyright terms: Public domain W3C validator