Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimlssid Structured version   Visualization version   GIF version

Theorem dimlssid 33604
Description: If the dimension of a linear subspace 𝐿 is the dimension of the whole vector space 𝐸, then 𝐿 is the whole space. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
dimlssid.b 𝐵 = (Base‘𝐸)
dimlssid.e (𝜑𝐸 ∈ LVec)
dimlssid.1 (𝜑 → (dim‘𝐸) ∈ ℕ0)
dimlssid.l (𝜑𝐿 ∈ (LSubSp‘𝐸))
dimlssid.2 (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
Assertion
Ref Expression
dimlssid (𝜑𝐿 = 𝐵)

Proof of Theorem dimlssid
Dummy variables 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimlssid.e . . . 4 (𝜑𝐸 ∈ LVec)
2 dimlssid.l . . . 4 (𝜑𝐿 ∈ (LSubSp‘𝐸))
3 eqid 2729 . . . . 5 (𝐸s 𝐿) = (𝐸s 𝐿)
4 eqid 2729 . . . . 5 (LSubSp‘𝐸) = (LSubSp‘𝐸)
53, 4lsslvec 21031 . . . 4 ((𝐸 ∈ LVec ∧ 𝐿 ∈ (LSubSp‘𝐸)) → (𝐸s 𝐿) ∈ LVec)
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝐸s 𝐿) ∈ LVec)
7 eqid 2729 . . . 4 (LBasis‘(𝐸s 𝐿)) = (LBasis‘(𝐸s 𝐿))
87lbsex 21090 . . 3 ((𝐸s 𝐿) ∈ LVec → (LBasis‘(𝐸s 𝐿)) ≠ ∅)
96, 8syl 17 . 2 (𝜑 → (LBasis‘(𝐸s 𝐿)) ≠ ∅)
10 simplr 768 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑠 ∈ (LBasis‘𝐸))
11 eqid 2729 . . . . . . . . . . 11 (LBasis‘𝐸) = (LBasis‘𝐸)
1211dimval 33572 . . . . . . . . . 10 ((𝐸 ∈ LVec ∧ 𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠))
131, 12sylan 580 . . . . . . . . 9 ((𝜑𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠))
1413ad4ant13 751 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘𝐸) = (♯‘𝑠))
15 dimlssid.1 . . . . . . . . 9 (𝜑 → (dim‘𝐸) ∈ ℕ0)
1615ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘𝐸) ∈ ℕ0)
1714, 16eqeltrrd 2829 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (♯‘𝑠) ∈ ℕ0)
18 hashclb 14283 . . . . . . . 8 (𝑠 ∈ (LBasis‘𝐸) → (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0))
1918biimpar 477 . . . . . . 7 ((𝑠 ∈ (LBasis‘𝐸) ∧ (♯‘𝑠) ∈ ℕ0) → 𝑠 ∈ Fin)
2010, 17, 19syl2anc 584 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑠 ∈ Fin)
21 simpr 484 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡𝑠)
22 dimlssid.2 . . . . . . . 8 (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
2322ad3antrrr 730 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
246ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (𝐸s 𝐿) ∈ LVec)
25 simpllr 775 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 ∈ (LBasis‘(𝐸s 𝐿)))
267dimval 33572 . . . . . . . 8 (((𝐸s 𝐿) ∈ LVec ∧ 𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → (dim‘(𝐸s 𝐿)) = (♯‘𝑡))
2724, 25, 26syl2anc 584 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘(𝐸s 𝐿)) = (♯‘𝑡))
2823, 27, 143eqtr3d 2772 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (♯‘𝑡) = (♯‘𝑠))
2920, 21, 28phphashrd 14392 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 = 𝑠)
3029fveq2d 6830 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑡) = ((LSpan‘𝐸)‘𝑠))
31 dimlssid.b . . . . . . . 8 𝐵 = (Base‘𝐸)
3231, 4lssss 20857 . . . . . . 7 (𝐿 ∈ (LSubSp‘𝐸) → 𝐿𝐵)
333, 31ressbas2 17167 . . . . . . 7 (𝐿𝐵𝐿 = (Base‘(𝐸s 𝐿)))
342, 32, 333syl 18 . . . . . 6 (𝜑𝐿 = (Base‘(𝐸s 𝐿)))
3534ad3antrrr 730 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 = (Base‘(𝐸s 𝐿)))
36 eqid 2729 . . . . . . 7 (Base‘(𝐸s 𝐿)) = (Base‘(𝐸s 𝐿))
37 eqid 2729 . . . . . . 7 (LSpan‘(𝐸s 𝐿)) = (LSpan‘(𝐸s 𝐿))
3836, 7, 37lbssp 21001 . . . . . 6 (𝑡 ∈ (LBasis‘(𝐸s 𝐿)) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = (Base‘(𝐸s 𝐿)))
3925, 38syl 17 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = (Base‘(𝐸s 𝐿)))
401lveclmodd 21029 . . . . . . 7 (𝜑𝐸 ∈ LMod)
4140ad3antrrr 730 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐸 ∈ LMod)
422ad3antrrr 730 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 ∈ (LSubSp‘𝐸))
4336, 7lbsss 20999 . . . . . . . 8 (𝑡 ∈ (LBasis‘(𝐸s 𝐿)) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
4425, 43syl 17 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
4544, 35sseqtrrd 3975 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡𝐿)
46 eqid 2729 . . . . . . 7 (LSpan‘𝐸) = (LSpan‘𝐸)
473, 46, 37, 4lsslsp 20936 . . . . . 6 ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ 𝑡𝐿) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡))
4841, 42, 45, 47syl3anc 1373 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡))
4935, 39, 483eqtr2rd 2771 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑡) = 𝐿)
5031, 11, 46lbssp 21001 . . . . 5 (𝑠 ∈ (LBasis‘𝐸) → ((LSpan‘𝐸)‘𝑠) = 𝐵)
5110, 50syl 17 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑠) = 𝐵)
5230, 49, 513eqtr3d 2772 . . 3 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 = 𝐵)
531adantr 480 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐸 ∈ LVec)
5443adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
5534adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿 = (Base‘(𝐸s 𝐿)))
5654, 55sseqtrrd 3975 . . . . 5 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡𝐿)
572, 32syl 17 . . . . . 6 (𝜑𝐿𝐵)
5857adantr 480 . . . . 5 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿𝐵)
5956, 58sstrd 3948 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡𝐵)
606lveclmodd 21029 . . . . . . . 8 (𝜑 → (𝐸s 𝐿) ∈ LMod)
6160ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (𝐸s 𝐿) ∈ LMod)
62 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝐸) = (Scalar‘𝐸)
6362lvecdrng 21027 . . . . . . . . . . 11 (𝐸 ∈ LVec → (Scalar‘𝐸) ∈ DivRing)
64 drngnzr 20651 . . . . . . . . . . 11 ((Scalar‘𝐸) ∈ DivRing → (Scalar‘𝐸) ∈ NzRing)
651, 63, 643syl 18 . . . . . . . . . 10 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
66 eqid 2729 . . . . . . . . . . 11 (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸))
67 eqid 2729 . . . . . . . . . . 11 (0g‘(Scalar‘𝐸)) = (0g‘(Scalar‘𝐸))
6866, 67nzrnz 20418 . . . . . . . . . 10 ((Scalar‘𝐸) ∈ NzRing → (1r‘(Scalar‘𝐸)) ≠ (0g‘(Scalar‘𝐸)))
6965, 68syl 17 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐸)) ≠ (0g‘(Scalar‘𝐸)))
703, 62resssca 17265 . . . . . . . . . . 11 (𝐿 ∈ (LSubSp‘𝐸) → (Scalar‘𝐸) = (Scalar‘(𝐸s 𝐿)))
712, 70syl 17 . . . . . . . . . 10 (𝜑 → (Scalar‘𝐸) = (Scalar‘(𝐸s 𝐿)))
7271fveq2d 6830 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘(𝐸s 𝐿))))
7371fveq2d 6830 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐸)) = (0g‘(Scalar‘(𝐸s 𝐿))))
7469, 72, 733netr3d 3001 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿))))
7574ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿))))
76 simplr 768 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑡 ∈ (LBasis‘(𝐸s 𝐿)))
77 simpr 484 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑢𝑡)
78 eqid 2729 . . . . . . . 8 (Scalar‘(𝐸s 𝐿)) = (Scalar‘(𝐸s 𝐿))
79 eqid 2729 . . . . . . . 8 (1r‘(Scalar‘(𝐸s 𝐿))) = (1r‘(Scalar‘(𝐸s 𝐿)))
80 eqid 2729 . . . . . . . 8 (0g‘(Scalar‘(𝐸s 𝐿))) = (0g‘(Scalar‘(𝐸s 𝐿)))
817, 37, 78, 79, 80lbsind2 21003 . . . . . . 7 ((((𝐸s 𝐿) ∈ LMod ∧ (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿)))) ∧ 𝑡 ∈ (LBasis‘(𝐸s 𝐿)) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})))
8261, 75, 76, 77, 81syl211anc 1378 . . . . . 6 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})))
8340ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝐸 ∈ LMod)
842ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝐿 ∈ (LSubSp‘𝐸))
8556adantr 480 . . . . . . . 8 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑡𝐿)
8685ssdifssd 4100 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (𝑡 ∖ {𝑢}) ⊆ 𝐿)
873, 46, 37, 4lsslsp 20936 . . . . . . 7 ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ (𝑡 ∖ {𝑢}) ⊆ 𝐿) → ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
8883, 84, 86, 87syl3anc 1373 . . . . . 6 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
8982, 88neleqtrd 2850 . . . . 5 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
9089ralrimiva 3121 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → ∀𝑢𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
9111, 31, 46lbsext 21088 . . . 4 ((𝐸 ∈ LVec ∧ 𝑡𝐵 ∧ ∀𝑢𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡𝑠)
9253, 59, 90, 91syl3anc 1373 . . 3 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡𝑠)
9352, 92r19.29a 3137 . 2 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿 = 𝐵)
949, 93n0limd 32434 1 (𝜑𝐿 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  wss 3905  c0 4286  {csn 4579  cfv 6486  (class class class)co 7353  Fincfn 8879  0cn0 12402  chash 14255  Basecbs 17138  s cress 17159  Scalarcsca 17182  0gc0g 17361  1rcur 20084  NzRingcnzr 20415  DivRingcdr 20632  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LBasisclbs 20996  LVecclvec 21024  dimcldim 33570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-ple 17199  df-ocomp 17200  df-0g 17363  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lbs 20997  df-lvec 21025  df-dim 33571
This theorem is referenced by:  lvecendof1f1o  33605
  Copyright terms: Public domain W3C validator