Step | Hyp | Ref
| Expression |
1 | | dimlssid.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ LVec) |
2 | | dimlssid.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (LSubSp‘𝐸)) |
3 | | eqid 2740 |
. . . . 5
⊢ (𝐸 ↾s 𝐿) = (𝐸 ↾s 𝐿) |
4 | | eqid 2740 |
. . . . 5
⊢
(LSubSp‘𝐸) =
(LSubSp‘𝐸) |
5 | 3, 4 | lsslvec 21131 |
. . . 4
⊢ ((𝐸 ∈ LVec ∧ 𝐿 ∈ (LSubSp‘𝐸)) → (𝐸 ↾s 𝐿) ∈ LVec) |
6 | 1, 2, 5 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐸 ↾s 𝐿) ∈ LVec) |
7 | | eqid 2740 |
. . . 4
⊢
(LBasis‘(𝐸
↾s 𝐿)) =
(LBasis‘(𝐸
↾s 𝐿)) |
8 | 7 | lbsex 21190 |
. . 3
⊢ ((𝐸 ↾s 𝐿) ∈ LVec →
(LBasis‘(𝐸
↾s 𝐿))
≠ ∅) |
9 | 6, 8 | syl 17 |
. 2
⊢ (𝜑 → (LBasis‘(𝐸 ↾s 𝐿)) ≠
∅) |
10 | | simplr 768 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑠 ∈ (LBasis‘𝐸)) |
11 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(LBasis‘𝐸) =
(LBasis‘𝐸) |
12 | 11 | dimval 33613 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ LVec ∧ 𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠)) |
13 | 1, 12 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠)) |
14 | 13 | ad4ant13 750 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (dim‘𝐸) = (♯‘𝑠)) |
15 | | dimlssid.1 |
. . . . . . . . 9
⊢ (𝜑 → (dim‘𝐸) ∈
ℕ0) |
16 | 15 | ad3antrrr 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (dim‘𝐸) ∈
ℕ0) |
17 | 14, 16 | eqeltrrd 2845 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (♯‘𝑠) ∈
ℕ0) |
18 | | hashclb 14407 |
. . . . . . . 8
⊢ (𝑠 ∈ (LBasis‘𝐸) → (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈
ℕ0)) |
19 | 18 | biimpar 477 |
. . . . . . 7
⊢ ((𝑠 ∈ (LBasis‘𝐸) ∧ (♯‘𝑠) ∈ ℕ0)
→ 𝑠 ∈
Fin) |
20 | 10, 17, 19 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑠 ∈ Fin) |
21 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑡 ⊆ 𝑠) |
22 | | dimlssid.2 |
. . . . . . . 8
⊢ (𝜑 → (dim‘(𝐸 ↾s 𝐿)) = (dim‘𝐸)) |
23 | 22 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (dim‘(𝐸 ↾s 𝐿)) = (dim‘𝐸)) |
24 | 6 | ad3antrrr 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (𝐸 ↾s 𝐿) ∈ LVec) |
25 | | simpllr 775 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) |
26 | 7 | dimval 33613 |
. . . . . . . 8
⊢ (((𝐸 ↾s 𝐿) ∈ LVec ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → (dim‘(𝐸 ↾s 𝐿)) = (♯‘𝑡)) |
27 | 24, 25, 26 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (dim‘(𝐸 ↾s 𝐿)) = (♯‘𝑡)) |
28 | 23, 27, 14 | 3eqtr3d 2788 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → (♯‘𝑡) = (♯‘𝑠)) |
29 | 20, 21, 28 | phphashrd 14516 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑡 = 𝑠) |
30 | 29 | fveq2d 6924 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → ((LSpan‘𝐸)‘𝑡) = ((LSpan‘𝐸)‘𝑠)) |
31 | | dimlssid.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐸) |
32 | 31, 4 | lssss 20957 |
. . . . . . 7
⊢ (𝐿 ∈ (LSubSp‘𝐸) → 𝐿 ⊆ 𝐵) |
33 | 3, 31 | ressbas2 17296 |
. . . . . . 7
⊢ (𝐿 ⊆ 𝐵 → 𝐿 = (Base‘(𝐸 ↾s 𝐿))) |
34 | 2, 32, 33 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐿 = (Base‘(𝐸 ↾s 𝐿))) |
35 | 34 | ad3antrrr 729 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝐿 = (Base‘(𝐸 ↾s 𝐿))) |
36 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘(𝐸
↾s 𝐿)) =
(Base‘(𝐸
↾s 𝐿)) |
37 | | eqid 2740 |
. . . . . . 7
⊢
(LSpan‘(𝐸
↾s 𝐿)) =
(LSpan‘(𝐸
↾s 𝐿)) |
38 | 36, 7, 37 | lbssp 21101 |
. . . . . 6
⊢ (𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿)) → ((LSpan‘(𝐸 ↾s 𝐿))‘𝑡) = (Base‘(𝐸 ↾s 𝐿))) |
39 | 25, 38 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → ((LSpan‘(𝐸 ↾s 𝐿))‘𝑡) = (Base‘(𝐸 ↾s 𝐿))) |
40 | 1 | lveclmodd 21129 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ LMod) |
41 | 40 | ad3antrrr 729 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝐸 ∈ LMod) |
42 | 2 | ad3antrrr 729 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝐿 ∈ (LSubSp‘𝐸)) |
43 | 36, 7 | lbsss 21099 |
. . . . . . . 8
⊢ (𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿)) → 𝑡 ⊆ (Base‘(𝐸 ↾s 𝐿))) |
44 | 25, 43 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑡 ⊆ (Base‘(𝐸 ↾s 𝐿))) |
45 | 44, 35 | sseqtrrd 4050 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝑡 ⊆ 𝐿) |
46 | | eqid 2740 |
. . . . . . 7
⊢
(LSpan‘𝐸) =
(LSpan‘𝐸) |
47 | 3, 46, 37, 4 | lsslsp 21036 |
. . . . . 6
⊢ ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ 𝑡 ⊆ 𝐿) → ((LSpan‘(𝐸 ↾s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡)) |
48 | 41, 42, 45, 47 | syl3anc 1371 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → ((LSpan‘(𝐸 ↾s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡)) |
49 | 35, 39, 48 | 3eqtr2rd 2787 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → ((LSpan‘𝐸)‘𝑡) = 𝐿) |
50 | 31, 11, 46 | lbssp 21101 |
. . . . 5
⊢ (𝑠 ∈ (LBasis‘𝐸) → ((LSpan‘𝐸)‘𝑠) = 𝐵) |
51 | 10, 50 | syl 17 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → ((LSpan‘𝐸)‘𝑠) = 𝐵) |
52 | 30, 49, 51 | 3eqtr3d 2788 |
. . 3
⊢ ((((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡 ⊆ 𝑠) → 𝐿 = 𝐵) |
53 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝐸 ∈ LVec) |
54 | 43 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝑡 ⊆ (Base‘(𝐸 ↾s 𝐿))) |
55 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝐿 = (Base‘(𝐸 ↾s 𝐿))) |
56 | 54, 55 | sseqtrrd 4050 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝑡 ⊆ 𝐿) |
57 | 2, 32 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐿 ⊆ 𝐵) |
58 | 57 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝐿 ⊆ 𝐵) |
59 | 56, 58 | sstrd 4019 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝑡 ⊆ 𝐵) |
60 | 6 | lveclmodd 21129 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ↾s 𝐿) ∈ LMod) |
61 | 60 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → (𝐸 ↾s 𝐿) ∈ LMod) |
62 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝐸) =
(Scalar‘𝐸) |
63 | 62 | lvecdrng 21127 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ LVec →
(Scalar‘𝐸) ∈
DivRing) |
64 | | drngnzr 20770 |
. . . . . . . . . . 11
⊢
((Scalar‘𝐸)
∈ DivRing → (Scalar‘𝐸) ∈ NzRing) |
65 | 1, 63, 64 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (Scalar‘𝐸) ∈
NzRing) |
66 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(1r‘(Scalar‘𝐸)) =
(1r‘(Scalar‘𝐸)) |
67 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(0g‘(Scalar‘𝐸)) =
(0g‘(Scalar‘𝐸)) |
68 | 66, 67 | nzrnz 20541 |
. . . . . . . . . 10
⊢
((Scalar‘𝐸)
∈ NzRing → (1r‘(Scalar‘𝐸)) ≠
(0g‘(Scalar‘𝐸))) |
69 | 65, 68 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
(1r‘(Scalar‘𝐸)) ≠
(0g‘(Scalar‘𝐸))) |
70 | 3, 62 | resssca 17402 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (LSubSp‘𝐸) → (Scalar‘𝐸) = (Scalar‘(𝐸 ↾s 𝐿))) |
71 | 2, 70 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (Scalar‘𝐸) = (Scalar‘(𝐸 ↾s 𝐿))) |
72 | 71 | fveq2d 6924 |
. . . . . . . . 9
⊢ (𝜑 →
(1r‘(Scalar‘𝐸)) =
(1r‘(Scalar‘(𝐸 ↾s 𝐿)))) |
73 | 71 | fveq2d 6924 |
. . . . . . . . 9
⊢ (𝜑 →
(0g‘(Scalar‘𝐸)) =
(0g‘(Scalar‘(𝐸 ↾s 𝐿)))) |
74 | 69, 72, 73 | 3netr3d 3023 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Scalar‘(𝐸 ↾s 𝐿))) ≠
(0g‘(Scalar‘(𝐸 ↾s 𝐿)))) |
75 | 74 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) →
(1r‘(Scalar‘(𝐸 ↾s 𝐿))) ≠
(0g‘(Scalar‘(𝐸 ↾s 𝐿)))) |
76 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) |
77 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → 𝑢 ∈ 𝑡) |
78 | | eqid 2740 |
. . . . . . . 8
⊢
(Scalar‘(𝐸
↾s 𝐿)) =
(Scalar‘(𝐸
↾s 𝐿)) |
79 | | eqid 2740 |
. . . . . . . 8
⊢
(1r‘(Scalar‘(𝐸 ↾s 𝐿))) =
(1r‘(Scalar‘(𝐸 ↾s 𝐿))) |
80 | | eqid 2740 |
. . . . . . . 8
⊢
(0g‘(Scalar‘(𝐸 ↾s 𝐿))) =
(0g‘(Scalar‘(𝐸 ↾s 𝐿))) |
81 | 7, 37, 78, 79, 80 | lbsind2 21103 |
. . . . . . 7
⊢ ((((𝐸 ↾s 𝐿) ∈ LMod ∧
(1r‘(Scalar‘(𝐸 ↾s 𝐿))) ≠
(0g‘(Scalar‘(𝐸 ↾s 𝐿)))) ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿)) ∧ 𝑢 ∈ 𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸 ↾s 𝐿))‘(𝑡 ∖ {𝑢}))) |
82 | 61, 75, 76, 77, 81 | syl211anc 1376 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸 ↾s 𝐿))‘(𝑡 ∖ {𝑢}))) |
83 | 40 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → 𝐸 ∈ LMod) |
84 | 2 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → 𝐿 ∈ (LSubSp‘𝐸)) |
85 | 56 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → 𝑡 ⊆ 𝐿) |
86 | 85 | ssdifssd 4170 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → (𝑡 ∖ {𝑢}) ⊆ 𝐿) |
87 | 3, 46, 37, 4 | lsslsp 21036 |
. . . . . . 7
⊢ ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ (𝑡 ∖ {𝑢}) ⊆ 𝐿) → ((LSpan‘(𝐸 ↾s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) |
88 | 83, 84, 86, 87 | syl3anc 1371 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → ((LSpan‘(𝐸 ↾s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) |
89 | 82, 88 | neleqtrd 2866 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) ∧ 𝑢 ∈ 𝑡) → ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) |
90 | 89 | ralrimiva 3152 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) |
91 | 11, 31, 46 | lbsext 21188 |
. . . 4
⊢ ((𝐸 ∈ LVec ∧ 𝑡 ⊆ 𝐵 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡 ⊆ 𝑠) |
92 | 53, 59, 90, 91 | syl3anc 1371 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡 ⊆ 𝑠) |
93 | 52, 92 | r19.29a 3168 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (LBasis‘(𝐸 ↾s 𝐿))) → 𝐿 = 𝐵) |
94 | 9, 93 | n0limd 32501 |
1
⊢ (𝜑 → 𝐿 = 𝐵) |