Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimlssid Structured version   Visualization version   GIF version

Theorem dimlssid 33645
Description: If the dimension of a linear subspace 𝐿 is the dimension of the whole vector space 𝐸, then 𝐿 is the whole space. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
dimlssid.b 𝐵 = (Base‘𝐸)
dimlssid.e (𝜑𝐸 ∈ LVec)
dimlssid.1 (𝜑 → (dim‘𝐸) ∈ ℕ0)
dimlssid.l (𝜑𝐿 ∈ (LSubSp‘𝐸))
dimlssid.2 (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
Assertion
Ref Expression
dimlssid (𝜑𝐿 = 𝐵)

Proof of Theorem dimlssid
Dummy variables 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimlssid.e . . . 4 (𝜑𝐸 ∈ LVec)
2 dimlssid.l . . . 4 (𝜑𝐿 ∈ (LSubSp‘𝐸))
3 eqid 2740 . . . . 5 (𝐸s 𝐿) = (𝐸s 𝐿)
4 eqid 2740 . . . . 5 (LSubSp‘𝐸) = (LSubSp‘𝐸)
53, 4lsslvec 21131 . . . 4 ((𝐸 ∈ LVec ∧ 𝐿 ∈ (LSubSp‘𝐸)) → (𝐸s 𝐿) ∈ LVec)
61, 2, 5syl2anc 583 . . 3 (𝜑 → (𝐸s 𝐿) ∈ LVec)
7 eqid 2740 . . . 4 (LBasis‘(𝐸s 𝐿)) = (LBasis‘(𝐸s 𝐿))
87lbsex 21190 . . 3 ((𝐸s 𝐿) ∈ LVec → (LBasis‘(𝐸s 𝐿)) ≠ ∅)
96, 8syl 17 . 2 (𝜑 → (LBasis‘(𝐸s 𝐿)) ≠ ∅)
10 simplr 768 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑠 ∈ (LBasis‘𝐸))
11 eqid 2740 . . . . . . . . . . 11 (LBasis‘𝐸) = (LBasis‘𝐸)
1211dimval 33613 . . . . . . . . . 10 ((𝐸 ∈ LVec ∧ 𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠))
131, 12sylan 579 . . . . . . . . 9 ((𝜑𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠))
1413ad4ant13 750 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘𝐸) = (♯‘𝑠))
15 dimlssid.1 . . . . . . . . 9 (𝜑 → (dim‘𝐸) ∈ ℕ0)
1615ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘𝐸) ∈ ℕ0)
1714, 16eqeltrrd 2845 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (♯‘𝑠) ∈ ℕ0)
18 hashclb 14407 . . . . . . . 8 (𝑠 ∈ (LBasis‘𝐸) → (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0))
1918biimpar 477 . . . . . . 7 ((𝑠 ∈ (LBasis‘𝐸) ∧ (♯‘𝑠) ∈ ℕ0) → 𝑠 ∈ Fin)
2010, 17, 19syl2anc 583 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑠 ∈ Fin)
21 simpr 484 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡𝑠)
22 dimlssid.2 . . . . . . . 8 (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
2322ad3antrrr 729 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
246ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (𝐸s 𝐿) ∈ LVec)
25 simpllr 775 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 ∈ (LBasis‘(𝐸s 𝐿)))
267dimval 33613 . . . . . . . 8 (((𝐸s 𝐿) ∈ LVec ∧ 𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → (dim‘(𝐸s 𝐿)) = (♯‘𝑡))
2724, 25, 26syl2anc 583 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘(𝐸s 𝐿)) = (♯‘𝑡))
2823, 27, 143eqtr3d 2788 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (♯‘𝑡) = (♯‘𝑠))
2920, 21, 28phphashrd 14516 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 = 𝑠)
3029fveq2d 6924 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑡) = ((LSpan‘𝐸)‘𝑠))
31 dimlssid.b . . . . . . . 8 𝐵 = (Base‘𝐸)
3231, 4lssss 20957 . . . . . . 7 (𝐿 ∈ (LSubSp‘𝐸) → 𝐿𝐵)
333, 31ressbas2 17296 . . . . . . 7 (𝐿𝐵𝐿 = (Base‘(𝐸s 𝐿)))
342, 32, 333syl 18 . . . . . 6 (𝜑𝐿 = (Base‘(𝐸s 𝐿)))
3534ad3antrrr 729 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 = (Base‘(𝐸s 𝐿)))
36 eqid 2740 . . . . . . 7 (Base‘(𝐸s 𝐿)) = (Base‘(𝐸s 𝐿))
37 eqid 2740 . . . . . . 7 (LSpan‘(𝐸s 𝐿)) = (LSpan‘(𝐸s 𝐿))
3836, 7, 37lbssp 21101 . . . . . 6 (𝑡 ∈ (LBasis‘(𝐸s 𝐿)) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = (Base‘(𝐸s 𝐿)))
3925, 38syl 17 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = (Base‘(𝐸s 𝐿)))
401lveclmodd 21129 . . . . . . 7 (𝜑𝐸 ∈ LMod)
4140ad3antrrr 729 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐸 ∈ LMod)
422ad3antrrr 729 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 ∈ (LSubSp‘𝐸))
4336, 7lbsss 21099 . . . . . . . 8 (𝑡 ∈ (LBasis‘(𝐸s 𝐿)) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
4425, 43syl 17 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
4544, 35sseqtrrd 4050 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡𝐿)
46 eqid 2740 . . . . . . 7 (LSpan‘𝐸) = (LSpan‘𝐸)
473, 46, 37, 4lsslsp 21036 . . . . . 6 ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ 𝑡𝐿) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡))
4841, 42, 45, 47syl3anc 1371 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡))
4935, 39, 483eqtr2rd 2787 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑡) = 𝐿)
5031, 11, 46lbssp 21101 . . . . 5 (𝑠 ∈ (LBasis‘𝐸) → ((LSpan‘𝐸)‘𝑠) = 𝐵)
5110, 50syl 17 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑠) = 𝐵)
5230, 49, 513eqtr3d 2788 . . 3 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 = 𝐵)
531adantr 480 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐸 ∈ LVec)
5443adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
5534adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿 = (Base‘(𝐸s 𝐿)))
5654, 55sseqtrrd 4050 . . . . 5 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡𝐿)
572, 32syl 17 . . . . . 6 (𝜑𝐿𝐵)
5857adantr 480 . . . . 5 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿𝐵)
5956, 58sstrd 4019 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡𝐵)
606lveclmodd 21129 . . . . . . . 8 (𝜑 → (𝐸s 𝐿) ∈ LMod)
6160ad2antrr 725 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (𝐸s 𝐿) ∈ LMod)
62 eqid 2740 . . . . . . . . . . . 12 (Scalar‘𝐸) = (Scalar‘𝐸)
6362lvecdrng 21127 . . . . . . . . . . 11 (𝐸 ∈ LVec → (Scalar‘𝐸) ∈ DivRing)
64 drngnzr 20770 . . . . . . . . . . 11 ((Scalar‘𝐸) ∈ DivRing → (Scalar‘𝐸) ∈ NzRing)
651, 63, 643syl 18 . . . . . . . . . 10 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
66 eqid 2740 . . . . . . . . . . 11 (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸))
67 eqid 2740 . . . . . . . . . . 11 (0g‘(Scalar‘𝐸)) = (0g‘(Scalar‘𝐸))
6866, 67nzrnz 20541 . . . . . . . . . 10 ((Scalar‘𝐸) ∈ NzRing → (1r‘(Scalar‘𝐸)) ≠ (0g‘(Scalar‘𝐸)))
6965, 68syl 17 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐸)) ≠ (0g‘(Scalar‘𝐸)))
703, 62resssca 17402 . . . . . . . . . . 11 (𝐿 ∈ (LSubSp‘𝐸) → (Scalar‘𝐸) = (Scalar‘(𝐸s 𝐿)))
712, 70syl 17 . . . . . . . . . 10 (𝜑 → (Scalar‘𝐸) = (Scalar‘(𝐸s 𝐿)))
7271fveq2d 6924 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘(𝐸s 𝐿))))
7371fveq2d 6924 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐸)) = (0g‘(Scalar‘(𝐸s 𝐿))))
7469, 72, 733netr3d 3023 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿))))
7574ad2antrr 725 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿))))
76 simplr 768 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑡 ∈ (LBasis‘(𝐸s 𝐿)))
77 simpr 484 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑢𝑡)
78 eqid 2740 . . . . . . . 8 (Scalar‘(𝐸s 𝐿)) = (Scalar‘(𝐸s 𝐿))
79 eqid 2740 . . . . . . . 8 (1r‘(Scalar‘(𝐸s 𝐿))) = (1r‘(Scalar‘(𝐸s 𝐿)))
80 eqid 2740 . . . . . . . 8 (0g‘(Scalar‘(𝐸s 𝐿))) = (0g‘(Scalar‘(𝐸s 𝐿)))
817, 37, 78, 79, 80lbsind2 21103 . . . . . . 7 ((((𝐸s 𝐿) ∈ LMod ∧ (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿)))) ∧ 𝑡 ∈ (LBasis‘(𝐸s 𝐿)) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})))
8261, 75, 76, 77, 81syl211anc 1376 . . . . . 6 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})))
8340ad2antrr 725 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝐸 ∈ LMod)
842ad2antrr 725 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝐿 ∈ (LSubSp‘𝐸))
8556adantr 480 . . . . . . . 8 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑡𝐿)
8685ssdifssd 4170 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (𝑡 ∖ {𝑢}) ⊆ 𝐿)
873, 46, 37, 4lsslsp 21036 . . . . . . 7 ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ (𝑡 ∖ {𝑢}) ⊆ 𝐿) → ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
8883, 84, 86, 87syl3anc 1371 . . . . . 6 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
8982, 88neleqtrd 2866 . . . . 5 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
9089ralrimiva 3152 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → ∀𝑢𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
9111, 31, 46lbsext 21188 . . . 4 ((𝐸 ∈ LVec ∧ 𝑡𝐵 ∧ ∀𝑢𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡𝑠)
9253, 59, 90, 91syl3anc 1371 . . 3 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡𝑠)
9352, 92r19.29a 3168 . 2 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿 = 𝐵)
949, 93n0limd 32501 1 (𝜑𝐿 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  Fincfn 9003  0cn0 12553  chash 14379  Basecbs 17258  s cress 17287  Scalarcsca 17314  0gc0g 17499  1rcur 20208  NzRingcnzr 20538  DivRingcdr 20751  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LBasisclbs 21096  LVecclvec 21124  dimcldim 33611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-ple 17331  df-ocomp 17332  df-0g 17501  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lbs 21097  df-lvec 21125  df-dim 33612
This theorem is referenced by:  lvecendof1f1o  33646
  Copyright terms: Public domain W3C validator