Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimlssid Structured version   Visualization version   GIF version

Theorem dimlssid 33683
Description: If the dimension of a linear subspace 𝐿 is the dimension of the whole vector space 𝐸, then 𝐿 is the whole space. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
dimlssid.b 𝐵 = (Base‘𝐸)
dimlssid.e (𝜑𝐸 ∈ LVec)
dimlssid.1 (𝜑 → (dim‘𝐸) ∈ ℕ0)
dimlssid.l (𝜑𝐿 ∈ (LSubSp‘𝐸))
dimlssid.2 (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
Assertion
Ref Expression
dimlssid (𝜑𝐿 = 𝐵)

Proof of Theorem dimlssid
Dummy variables 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimlssid.e . . . 4 (𝜑𝐸 ∈ LVec)
2 dimlssid.l . . . 4 (𝜑𝐿 ∈ (LSubSp‘𝐸))
3 eqid 2737 . . . . 5 (𝐸s 𝐿) = (𝐸s 𝐿)
4 eqid 2737 . . . . 5 (LSubSp‘𝐸) = (LSubSp‘𝐸)
53, 4lsslvec 21108 . . . 4 ((𝐸 ∈ LVec ∧ 𝐿 ∈ (LSubSp‘𝐸)) → (𝐸s 𝐿) ∈ LVec)
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝐸s 𝐿) ∈ LVec)
7 eqid 2737 . . . 4 (LBasis‘(𝐸s 𝐿)) = (LBasis‘(𝐸s 𝐿))
87lbsex 21167 . . 3 ((𝐸s 𝐿) ∈ LVec → (LBasis‘(𝐸s 𝐿)) ≠ ∅)
96, 8syl 17 . 2 (𝜑 → (LBasis‘(𝐸s 𝐿)) ≠ ∅)
10 simplr 769 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑠 ∈ (LBasis‘𝐸))
11 eqid 2737 . . . . . . . . . . 11 (LBasis‘𝐸) = (LBasis‘𝐸)
1211dimval 33651 . . . . . . . . . 10 ((𝐸 ∈ LVec ∧ 𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠))
131, 12sylan 580 . . . . . . . . 9 ((𝜑𝑠 ∈ (LBasis‘𝐸)) → (dim‘𝐸) = (♯‘𝑠))
1413ad4ant13 751 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘𝐸) = (♯‘𝑠))
15 dimlssid.1 . . . . . . . . 9 (𝜑 → (dim‘𝐸) ∈ ℕ0)
1615ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘𝐸) ∈ ℕ0)
1714, 16eqeltrrd 2842 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (♯‘𝑠) ∈ ℕ0)
18 hashclb 14397 . . . . . . . 8 (𝑠 ∈ (LBasis‘𝐸) → (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0))
1918biimpar 477 . . . . . . 7 ((𝑠 ∈ (LBasis‘𝐸) ∧ (♯‘𝑠) ∈ ℕ0) → 𝑠 ∈ Fin)
2010, 17, 19syl2anc 584 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑠 ∈ Fin)
21 simpr 484 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡𝑠)
22 dimlssid.2 . . . . . . . 8 (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
2322ad3antrrr 730 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))
246ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (𝐸s 𝐿) ∈ LVec)
25 simpllr 776 . . . . . . . 8 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 ∈ (LBasis‘(𝐸s 𝐿)))
267dimval 33651 . . . . . . . 8 (((𝐸s 𝐿) ∈ LVec ∧ 𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → (dim‘(𝐸s 𝐿)) = (♯‘𝑡))
2724, 25, 26syl2anc 584 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (dim‘(𝐸s 𝐿)) = (♯‘𝑡))
2823, 27, 143eqtr3d 2785 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → (♯‘𝑡) = (♯‘𝑠))
2920, 21, 28phphashrd 14506 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 = 𝑠)
3029fveq2d 6910 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑡) = ((LSpan‘𝐸)‘𝑠))
31 dimlssid.b . . . . . . . 8 𝐵 = (Base‘𝐸)
3231, 4lssss 20934 . . . . . . 7 (𝐿 ∈ (LSubSp‘𝐸) → 𝐿𝐵)
333, 31ressbas2 17283 . . . . . . 7 (𝐿𝐵𝐿 = (Base‘(𝐸s 𝐿)))
342, 32, 333syl 18 . . . . . 6 (𝜑𝐿 = (Base‘(𝐸s 𝐿)))
3534ad3antrrr 730 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 = (Base‘(𝐸s 𝐿)))
36 eqid 2737 . . . . . . 7 (Base‘(𝐸s 𝐿)) = (Base‘(𝐸s 𝐿))
37 eqid 2737 . . . . . . 7 (LSpan‘(𝐸s 𝐿)) = (LSpan‘(𝐸s 𝐿))
3836, 7, 37lbssp 21078 . . . . . 6 (𝑡 ∈ (LBasis‘(𝐸s 𝐿)) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = (Base‘(𝐸s 𝐿)))
3925, 38syl 17 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = (Base‘(𝐸s 𝐿)))
401lveclmodd 21106 . . . . . . 7 (𝜑𝐸 ∈ LMod)
4140ad3antrrr 730 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐸 ∈ LMod)
422ad3antrrr 730 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 ∈ (LSubSp‘𝐸))
4336, 7lbsss 21076 . . . . . . . 8 (𝑡 ∈ (LBasis‘(𝐸s 𝐿)) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
4425, 43syl 17 . . . . . . 7 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
4544, 35sseqtrrd 4021 . . . . . 6 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝑡𝐿)
46 eqid 2737 . . . . . . 7 (LSpan‘𝐸) = (LSpan‘𝐸)
473, 46, 37, 4lsslsp 21013 . . . . . 6 ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ 𝑡𝐿) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡))
4841, 42, 45, 47syl3anc 1373 . . . . 5 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘(𝐸s 𝐿))‘𝑡) = ((LSpan‘𝐸)‘𝑡))
4935, 39, 483eqtr2rd 2784 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑡) = 𝐿)
5031, 11, 46lbssp 21078 . . . . 5 (𝑠 ∈ (LBasis‘𝐸) → ((LSpan‘𝐸)‘𝑠) = 𝐵)
5110, 50syl 17 . . . 4 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → ((LSpan‘𝐸)‘𝑠) = 𝐵)
5230, 49, 513eqtr3d 2785 . . 3 ((((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑠 ∈ (LBasis‘𝐸)) ∧ 𝑡𝑠) → 𝐿 = 𝐵)
531adantr 480 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐸 ∈ LVec)
5443adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡 ⊆ (Base‘(𝐸s 𝐿)))
5534adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿 = (Base‘(𝐸s 𝐿)))
5654, 55sseqtrrd 4021 . . . . 5 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡𝐿)
572, 32syl 17 . . . . . 6 (𝜑𝐿𝐵)
5857adantr 480 . . . . 5 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿𝐵)
5956, 58sstrd 3994 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝑡𝐵)
606lveclmodd 21106 . . . . . . . 8 (𝜑 → (𝐸s 𝐿) ∈ LMod)
6160ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (𝐸s 𝐿) ∈ LMod)
62 eqid 2737 . . . . . . . . . . . 12 (Scalar‘𝐸) = (Scalar‘𝐸)
6362lvecdrng 21104 . . . . . . . . . . 11 (𝐸 ∈ LVec → (Scalar‘𝐸) ∈ DivRing)
64 drngnzr 20748 . . . . . . . . . . 11 ((Scalar‘𝐸) ∈ DivRing → (Scalar‘𝐸) ∈ NzRing)
651, 63, 643syl 18 . . . . . . . . . 10 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
66 eqid 2737 . . . . . . . . . . 11 (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸))
67 eqid 2737 . . . . . . . . . . 11 (0g‘(Scalar‘𝐸)) = (0g‘(Scalar‘𝐸))
6866, 67nzrnz 20515 . . . . . . . . . 10 ((Scalar‘𝐸) ∈ NzRing → (1r‘(Scalar‘𝐸)) ≠ (0g‘(Scalar‘𝐸)))
6965, 68syl 17 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐸)) ≠ (0g‘(Scalar‘𝐸)))
703, 62resssca 17387 . . . . . . . . . . 11 (𝐿 ∈ (LSubSp‘𝐸) → (Scalar‘𝐸) = (Scalar‘(𝐸s 𝐿)))
712, 70syl 17 . . . . . . . . . 10 (𝜑 → (Scalar‘𝐸) = (Scalar‘(𝐸s 𝐿)))
7271fveq2d 6910 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘(𝐸s 𝐿))))
7371fveq2d 6910 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐸)) = (0g‘(Scalar‘(𝐸s 𝐿))))
7469, 72, 733netr3d 3017 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿))))
7574ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿))))
76 simplr 769 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑡 ∈ (LBasis‘(𝐸s 𝐿)))
77 simpr 484 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑢𝑡)
78 eqid 2737 . . . . . . . 8 (Scalar‘(𝐸s 𝐿)) = (Scalar‘(𝐸s 𝐿))
79 eqid 2737 . . . . . . . 8 (1r‘(Scalar‘(𝐸s 𝐿))) = (1r‘(Scalar‘(𝐸s 𝐿)))
80 eqid 2737 . . . . . . . 8 (0g‘(Scalar‘(𝐸s 𝐿))) = (0g‘(Scalar‘(𝐸s 𝐿)))
817, 37, 78, 79, 80lbsind2 21080 . . . . . . 7 ((((𝐸s 𝐿) ∈ LMod ∧ (1r‘(Scalar‘(𝐸s 𝐿))) ≠ (0g‘(Scalar‘(𝐸s 𝐿)))) ∧ 𝑡 ∈ (LBasis‘(𝐸s 𝐿)) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})))
8261, 75, 76, 77, 81syl211anc 1378 . . . . . 6 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})))
8340ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝐸 ∈ LMod)
842ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝐿 ∈ (LSubSp‘𝐸))
8556adantr 480 . . . . . . . 8 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → 𝑡𝐿)
8685ssdifssd 4147 . . . . . . 7 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → (𝑡 ∖ {𝑢}) ⊆ 𝐿)
873, 46, 37, 4lsslsp 21013 . . . . . . 7 ((𝐸 ∈ LMod ∧ 𝐿 ∈ (LSubSp‘𝐸) ∧ (𝑡 ∖ {𝑢}) ⊆ 𝐿) → ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
8883, 84, 86, 87syl3anc 1373 . . . . . 6 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ((LSpan‘(𝐸s 𝐿))‘(𝑡 ∖ {𝑢})) = ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
8982, 88neleqtrd 2863 . . . . 5 (((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) ∧ 𝑢𝑡) → ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
9089ralrimiva 3146 . . . 4 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → ∀𝑢𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢})))
9111, 31, 46lbsext 21165 . . . 4 ((𝐸 ∈ LVec ∧ 𝑡𝐵 ∧ ∀𝑢𝑡 ¬ 𝑢 ∈ ((LSpan‘𝐸)‘(𝑡 ∖ {𝑢}))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡𝑠)
9253, 59, 90, 91syl3anc 1373 . . 3 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → ∃𝑠 ∈ (LBasis‘𝐸)𝑡𝑠)
9352, 92r19.29a 3162 . 2 ((𝜑𝑡 ∈ (LBasis‘(𝐸s 𝐿))) → 𝐿 = 𝐵)
949, 93n0limd 32491 1 (𝜑𝐿 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  wss 3951  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  Fincfn 8985  0cn0 12526  chash 14369  Basecbs 17247  s cress 17274  Scalarcsca 17300  0gc0g 17484  1rcur 20178  NzRingcnzr 20512  DivRingcdr 20729  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LBasisclbs 21073  LVecclvec 21101  dimcldim 33649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-r1 9804  df-rank 9805  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-ocomp 17318  df-0g 17486  df-mre 17629  df-mrc 17630  df-mri 17631  df-acs 17632  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-nzr 20513  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lbs 21074  df-lvec 21102  df-dim 33650
This theorem is referenced by:  lvecendof1f1o  33684
  Copyright terms: Public domain W3C validator