Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlem1 Structured version   Visualization version   GIF version

Theorem fldextrspunlem1 33667
Description: Lemma for fldextrspunfld 33668. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunlem1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))

Proof of Theorem fldextrspunlem1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
2 fldextrspunfld.j . . . . . 6 𝐽 = (𝐿s 𝐻)
32sdrgdrng 20760 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑𝐽 ∈ DivRing)
5 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6 eqid 2734 . . . . . 6 (𝐽s 𝐹) = (𝐽s 𝐹)
76sdrgdrng 20760 . . . . 5 (𝐹 ∈ (SubDRing‘𝐽) → (𝐽s 𝐹) ∈ DivRing)
85, 7syl 17 . . . 4 (𝜑 → (𝐽s 𝐹) ∈ DivRing)
9 sdrgsubrg 20761 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
101, 9syl 17 . . . . 5 (𝜑𝐻 ∈ (SubRing‘𝐿))
11 fldextrspunfld.5 . . . . . . . 8 (𝜑𝐺 ∈ (SubDRing‘𝐿))
12 sdrgsubrg 20761 . . . . . . . 8 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1311, 12syl 17 . . . . . . 7 (𝜑𝐺 ∈ (SubRing‘𝐿))
14 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 sdrgsubrg 20761 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐼))
17 fldextrspunfld.i . . . . . . . . 9 𝐼 = (𝐿s 𝐺)
1817subsubrg 20567 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐼) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺)))
1918biimpa 476 . . . . . . 7 ((𝐺 ∈ (SubRing‘𝐿) ∧ 𝐹 ∈ (SubRing‘𝐼)) → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2013, 16, 19syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2120simpld 494 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
22 eqid 2734 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
2322sdrgss 20763 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
245, 23syl 17 . . . . . 6 (𝜑𝐹 ⊆ (Base‘𝐽))
25 eqid 2734 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2625sdrgss 20763 . . . . . . . 8 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
271, 26syl 17 . . . . . . 7 (𝜑𝐻 ⊆ (Base‘𝐿))
282, 25ressbas2 17262 . . . . . . 7 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
2927, 28syl 17 . . . . . 6 (𝜑𝐻 = (Base‘𝐽))
3024, 29sseqtrrd 4001 . . . . 5 (𝜑𝐹𝐻)
312subsubrg 20567 . . . . . 6 (𝐻 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐽) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)))
3231biimpar 477 . . . . 5 ((𝐻 ∈ (SubRing‘𝐿) ∧ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)) → 𝐹 ∈ (SubRing‘𝐽))
3310, 21, 30, 32syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐽))
34 eqid 2734 . . . . 5 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
3534, 6sralvec 33576 . . . 4 ((𝐽 ∈ DivRing ∧ (𝐽s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐽)) → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
364, 8, 33, 35syl3anc 1372 . . 3 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
37 eqid 2734 . . . 4 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
3837lbsex 21136 . . 3 (((subringAlg ‘𝐽)‘𝐹) ∈ LVec → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
3936, 38syl 17 . 2 (𝜑 → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
40 fldextrspunfld.2 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Field)
41 fldidom 20740 . . . . . . . . . . . 12 (𝐿 ∈ Field → 𝐿 ∈ IDomn)
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝐿 ∈ IDomn)
4342idomringd 20697 . . . . . . . . . 10 (𝜑𝐿 ∈ Ring)
44 eqidd 2735 . . . . . . . . . 10 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
4525sdrgss 20763 . . . . . . . . . . . 12 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
4611, 45syl 17 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (Base‘𝐿))
4746, 27unssd 4172 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
48 fldextrspunfld.n . . . . . . . . . . 11 𝑁 = (RingSpan‘𝐿)
4948a1i 11 . . . . . . . . . 10 (𝜑𝑁 = (RingSpan‘𝐿))
50 fldextrspunfld.c . . . . . . . . . . 11 𝐶 = (𝑁‘(𝐺𝐻))
5150a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
5243, 44, 47, 49, 51rgspncl 20582 . . . . . . . . 9 (𝜑𝐶 ∈ (SubRing‘𝐿))
5343, 44, 47, 49, 51rgspnssid 20583 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
5453unssad 4173 . . . . . . . . 9 (𝜑𝐺𝐶)
55 fldextrspunfld.e . . . . . . . . . . 11 𝐸 = (𝐿s 𝐶)
5655subsubrg 20567 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
5756biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
5852, 13, 54, 57syl12anc 836 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐸))
59 eqid 2734 . . . . . . . . 9 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
6059sralmod 21157 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
6158, 60syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
62 ressabs 17272 . . . . . . . . . . 11 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6352, 54, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6455oveq1i 7423 . . . . . . . . . 10 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
6563, 64, 173eqtr4g 2794 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = 𝐼)
66 eqidd 2735 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
6725subrgss 20541 . . . . . . . . . . . . . 14 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
6852, 67syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ (Base‘𝐿))
6955, 25ressbas2 17262 . . . . . . . . . . . . 13 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
7068, 69syl 17 . . . . . . . . . . . 12 (𝜑𝐶 = (Base‘𝐸))
7153, 70sseqtrd 4000 . . . . . . . . . . 11 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐸))
7271unssad 4173 . . . . . . . . . 10 (𝜑𝐺 ⊆ (Base‘𝐸))
7366, 72srasca 21148 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7465, 73eqtr3d 2771 . . . . . . . 8 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7517sdrgdrng 20760 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
7611, 75syl 17 . . . . . . . 8 (𝜑𝐼 ∈ DivRing)
7774, 76eqeltrrd 2834 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
78 eqid 2734 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
7978islvec 21072 . . . . . . 7 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
8061, 77, 79sylanbrc 583 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
81 eqid 2734 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘𝐺)) = (LBasis‘((subringAlg ‘𝐸)‘𝐺))
8281lbsex 21136 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8380, 82syl 17 . . . . 5 (𝜑 → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8483adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8580ad2antrr 726 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
86 simpr 484 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺)))
8781dimval 33591 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐺) ∈ LVec ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
8885, 86, 87syl2anc 584 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
89 eqid 2734 . . . . . 6 (Base‘((subringAlg ‘𝐸)‘𝐺)) = (Base‘((subringAlg ‘𝐸)‘𝐺))
90 eqid 2734 . . . . . 6 (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘((subringAlg ‘𝐸)‘𝐺))
91 eqid 2734 . . . . . . . . . . . 12 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
9291, 37lbsss 21045 . . . . . . . . . . 11 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
9392ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
94 eqidd 2735 . . . . . . . . . . . . 13 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
9594, 24srabase 21145 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9629, 95eqtrd 2769 . . . . . . . . . . 11 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9796ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9893, 97sseqtrrd 4001 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐻)
9953unssbd 4174 . . . . . . . . . 10 (𝜑𝐻𝐶)
10099ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻𝐶)
10198, 100sstrd 3974 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐶)
10270ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 = (Base‘𝐸))
103101, 102sseqtrd 4000 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘𝐸))
104 eqidd 2735 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
10572ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐺 ⊆ (Base‘𝐸))
106104, 105srabase 21145 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
107103, 106sseqtrd 4000 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
10861ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
10989, 90lspssv 20950 . . . . . . . 8 ((((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
110108, 107, 109syl2anc 584 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
111 fldextrspunfld.k . . . . . . . . . . . . 13 𝐾 = (𝐿s 𝐹)
11240adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐿 ∈ Field)
11314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐼))
1145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐽))
11511adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubDRing‘𝐿))
1161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ∈ (SubDRing‘𝐿))
117 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
118 fldsdrgfld 20768 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ Field ∧ 𝐻 ∈ (SubDRing‘𝐿)) → (𝐿s 𝐻) ∈ Field)
11940, 1, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿s 𝐻) ∈ Field)
1202, 119eqeltrid 2837 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐽 ∈ Field)
121 ressabs 17272 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐻) → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1221, 30, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1232oveq1i 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝐽s 𝐹) = ((𝐿s 𝐻) ↾s 𝐹)
124122, 123, 1113eqtr4g 2794 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = 𝐾)
125 fldsdrgfld 20768 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐽)) → (𝐽s 𝐹) ∈ Field)
126120, 5, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) ∈ Field)
127124, 126eqeltrrd 2834 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
12830, 27sstrd 3974 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (Base‘𝐿))
129111, 25ressbas2 17262 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ⊆ (Base‘𝐿) → 𝐹 = (Base‘𝐾))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (Base‘𝐾))
131130oveq2d 7429 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = (𝐽s (Base‘𝐾)))
132124, 131eqtr3d 2771 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (𝐽s (Base‘𝐾)))
133130, 33eqeltrrd 2834 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐽))
134 brfldext 33638 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Field ∧ 𝐾 ∈ Field) → (𝐽/FldExt𝐾 ↔ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))))
135134biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))) → 𝐽/FldExt𝐾)
136120, 127, 132, 133, 135syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽/FldExt𝐾)
137136adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐽/FldExt𝐾)
138 extdgval 33646 . . . . . . . . . . . . . . . . 17 (𝐽/FldExt𝐾 → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
139137, 138syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
140130fveq2d 6890 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘(Base‘𝐾)))
141140fveq2d 6890 . . . . . . . . . . . . . . . . 17 (𝜑 → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
142141adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
14337dimval 33591 . . . . . . . . . . . . . . . . 17 ((((subringAlg ‘𝐽)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
14436, 143sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
145139, 142, 1443eqtr2d 2775 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (♯‘𝑏))
146 fldextrspunfld.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
147146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) ∈ ℕ0)
148145, 147eqeltrrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (♯‘𝑏) ∈ ℕ0)
149 hashclb 14380 . . . . . . . . . . . . . . 15 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
150149biimpar 477 . . . . . . . . . . . . . 14 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
151117, 148, 150syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ Fin)
152111, 17, 2, 112, 113, 114, 115, 116, 48, 50, 55, 117, 151fldextrspunlsp 33666 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
153152eqimssd 4020 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
15425, 55, 68, 54, 40resssra 33578 . . . . . . . . . . . . . . 15 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
155154fveq2d 6890 . . . . . . . . . . . . . 14 (𝜑 → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
156155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
157156fveq1d 6888 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏))
158115, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubRing‘𝐿))
159 eqid 2734 . . . . . . . . . . . . . . 15 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
160159sralmod 21157 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
161158, 160syl 17 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
162117, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
16396adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
164162, 163sseqtrrd 4001 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐻)
165116, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ⊆ (Base‘𝐿))
166164, 165sstrd 3974 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘𝐿))
167 eqidd 2735 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
168167, 46srabase 21145 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
169168adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
170166, 169sseqtrd 4000 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
171 eqid 2734 . . . . . . . . . . . . . . . 16 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
172 eqid 2734 . . . . . . . . . . . . . . . 16 (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) = (LSubSp‘((subringAlg ‘𝐿)‘𝐺))
173 eqid 2734 . . . . . . . . . . . . . . . 16 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
174171, 172, 173lspcl 20943 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
175161, 170, 174syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
176152, 175eqeltrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
17799adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻𝐶)
178164, 177sstrd 3974 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐶)
179 eqid 2734 . . . . . . . . . . . . . 14 (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)
180 eqid 2734 . . . . . . . . . . . . . 14 (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
181179, 173, 180, 172lsslsp 20982 . . . . . . . . . . . . 13 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) ∧ 𝑏𝐶) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
182161, 176, 178, 181syl3anc 1372 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
183157, 182eqtr2d 2770 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) = ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
184153, 183sseqtrd 4000 . . . . . . . . . 10 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
185184adantr 480 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
186102, 185eqsstrrd 3999 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
187106, 186eqsstrrd 3999 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘((subringAlg ‘𝐸)‘𝐺)) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
188110, 187eqssd 3981 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
18989, 81, 90, 85, 86, 107, 188lbslelsp 33588 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (♯‘𝑐) ≤ (♯‘𝑏))
19088, 189eqbrtrd 5145 . . . 4 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
19184, 190n0limd 32420 . . 3 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
192191, 145breqtrrd 5151 . 2 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
19339, 192n0limd 32420 1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cun 3929  wss 3931  c0 4313   class class class wbr 5123  cfv 6541  (class class class)co 7413  Fincfn 8967  cle 11278  0cn0 12509  chash 14352  Basecbs 17230  s cress 17253  Scalarcsca 17277  SubRingcsubrg 20538  RingSpancrgspn 20579  IDomncidom 20662  DivRingcdr 20698  Fieldcfield 20699  SubDRingcsdrg 20756  LModclmod 20827  LSubSpclss 20898  LSpanclspn 20938  LBasisclbs 21042  LVecclvec 21070  subringAlg csra 21139  dimcldim 33589  /FldExtcfldext 33629  [:]cextdg 33632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-rpss 7725  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-inf 9465  df-oi 9532  df-r1 9786  df-rank 9787  df-dju 9923  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-s2 14870  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ocomp 17295  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-mri 17603  df-acs 17604  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-nzr 20482  df-subrng 20515  df-subrg 20539  df-rgspn 20580  df-rlreg 20663  df-domn 20664  df-idom 20665  df-drng 20700  df-field 20701  df-sdrg 20757  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lmhm 20990  df-lbs 21043  df-lvec 21071  df-sra 21141  df-rgmod 21142  df-cnfld 21328  df-zring 21421  df-dsmm 21707  df-frlm 21722  df-uvc 21758  df-ind 32781  df-dim 33590  df-fldext 33633  df-extdg 33634
This theorem is referenced by:  fldextrspunfld  33668  fldextrspundgle  33670
  Copyright terms: Public domain W3C validator