Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlem1 Structured version   Visualization version   GIF version

Theorem fldextrspunlem1 33760
Description: Lemma for fldextrspunfld 33761. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunlem1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))

Proof of Theorem fldextrspunlem1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
2 fldextrspunfld.j . . . . . 6 𝐽 = (𝐿s 𝐻)
32sdrgdrng 20714 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑𝐽 ∈ DivRing)
5 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6 eqid 2733 . . . . . 6 (𝐽s 𝐹) = (𝐽s 𝐹)
76sdrgdrng 20714 . . . . 5 (𝐹 ∈ (SubDRing‘𝐽) → (𝐽s 𝐹) ∈ DivRing)
85, 7syl 17 . . . 4 (𝜑 → (𝐽s 𝐹) ∈ DivRing)
9 sdrgsubrg 20715 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
101, 9syl 17 . . . . 5 (𝜑𝐻 ∈ (SubRing‘𝐿))
11 fldextrspunfld.5 . . . . . . . 8 (𝜑𝐺 ∈ (SubDRing‘𝐿))
12 sdrgsubrg 20715 . . . . . . . 8 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1311, 12syl 17 . . . . . . 7 (𝜑𝐺 ∈ (SubRing‘𝐿))
14 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 sdrgsubrg 20715 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐼))
17 fldextrspunfld.i . . . . . . . . 9 𝐼 = (𝐿s 𝐺)
1817subsubrg 20522 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐼) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺)))
1918biimpa 476 . . . . . . 7 ((𝐺 ∈ (SubRing‘𝐿) ∧ 𝐹 ∈ (SubRing‘𝐼)) → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2013, 16, 19syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2120simpld 494 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
22 eqid 2733 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
2322sdrgss 20717 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
245, 23syl 17 . . . . . 6 (𝜑𝐹 ⊆ (Base‘𝐽))
25 eqid 2733 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2625sdrgss 20717 . . . . . . . 8 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
271, 26syl 17 . . . . . . 7 (𝜑𝐻 ⊆ (Base‘𝐿))
282, 25ressbas2 17156 . . . . . . 7 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
2927, 28syl 17 . . . . . 6 (𝜑𝐻 = (Base‘𝐽))
3024, 29sseqtrrd 3968 . . . . 5 (𝜑𝐹𝐻)
312subsubrg 20522 . . . . . 6 (𝐻 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐽) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)))
3231biimpar 477 . . . . 5 ((𝐻 ∈ (SubRing‘𝐿) ∧ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)) → 𝐹 ∈ (SubRing‘𝐽))
3310, 21, 30, 32syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐽))
34 eqid 2733 . . . . 5 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
3534, 6sralvec 33669 . . . 4 ((𝐽 ∈ DivRing ∧ (𝐽s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐽)) → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
364, 8, 33, 35syl3anc 1373 . . 3 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
37 eqid 2733 . . . 4 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
3837lbsex 21111 . . 3 (((subringAlg ‘𝐽)‘𝐹) ∈ LVec → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
3936, 38syl 17 . 2 (𝜑 → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
40 fldextrspunfld.2 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Field)
41 fldidom 20695 . . . . . . . . . . . 12 (𝐿 ∈ Field → 𝐿 ∈ IDomn)
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝐿 ∈ IDomn)
4342idomringd 20652 . . . . . . . . . 10 (𝜑𝐿 ∈ Ring)
44 eqidd 2734 . . . . . . . . . 10 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
4525sdrgss 20717 . . . . . . . . . . . 12 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
4611, 45syl 17 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (Base‘𝐿))
4746, 27unssd 4141 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
48 fldextrspunfld.n . . . . . . . . . . 11 𝑁 = (RingSpan‘𝐿)
4948a1i 11 . . . . . . . . . 10 (𝜑𝑁 = (RingSpan‘𝐿))
50 fldextrspunfld.c . . . . . . . . . . 11 𝐶 = (𝑁‘(𝐺𝐻))
5150a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
5243, 44, 47, 49, 51rgspncl 20537 . . . . . . . . 9 (𝜑𝐶 ∈ (SubRing‘𝐿))
5343, 44, 47, 49, 51rgspnssid 20538 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
5453unssad 4142 . . . . . . . . 9 (𝜑𝐺𝐶)
55 fldextrspunfld.e . . . . . . . . . . 11 𝐸 = (𝐿s 𝐶)
5655subsubrg 20522 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
5756biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
5852, 13, 54, 57syl12anc 836 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐸))
59 eqid 2733 . . . . . . . . 9 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
6059sralmod 21130 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
6158, 60syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
62 ressabs 17166 . . . . . . . . . . 11 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6352, 54, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6455oveq1i 7365 . . . . . . . . . 10 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
6563, 64, 173eqtr4g 2793 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = 𝐼)
66 eqidd 2734 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
6725subrgss 20496 . . . . . . . . . . . . . 14 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
6852, 67syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ (Base‘𝐿))
6955, 25ressbas2 17156 . . . . . . . . . . . . 13 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
7068, 69syl 17 . . . . . . . . . . . 12 (𝜑𝐶 = (Base‘𝐸))
7153, 70sseqtrd 3967 . . . . . . . . . . 11 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐸))
7271unssad 4142 . . . . . . . . . 10 (𝜑𝐺 ⊆ (Base‘𝐸))
7366, 72srasca 21123 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7465, 73eqtr3d 2770 . . . . . . . 8 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7517sdrgdrng 20714 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
7611, 75syl 17 . . . . . . . 8 (𝜑𝐼 ∈ DivRing)
7774, 76eqeltrrd 2834 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
78 eqid 2733 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
7978islvec 21047 . . . . . . 7 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
8061, 77, 79sylanbrc 583 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
81 eqid 2733 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘𝐺)) = (LBasis‘((subringAlg ‘𝐸)‘𝐺))
8281lbsex 21111 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8380, 82syl 17 . . . . 5 (𝜑 → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8483adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8580ad2antrr 726 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
86 simpr 484 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺)))
8781dimval 33685 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐺) ∈ LVec ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
8885, 86, 87syl2anc 584 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
89 eqid 2733 . . . . . 6 (Base‘((subringAlg ‘𝐸)‘𝐺)) = (Base‘((subringAlg ‘𝐸)‘𝐺))
90 eqid 2733 . . . . . 6 (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘((subringAlg ‘𝐸)‘𝐺))
91 eqid 2733 . . . . . . . . . . . 12 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
9291, 37lbsss 21020 . . . . . . . . . . 11 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
9392ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
94 eqidd 2734 . . . . . . . . . . . . 13 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
9594, 24srabase 21120 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9629, 95eqtrd 2768 . . . . . . . . . . 11 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9796ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9893, 97sseqtrrd 3968 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐻)
9953unssbd 4143 . . . . . . . . . 10 (𝜑𝐻𝐶)
10099ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻𝐶)
10198, 100sstrd 3941 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐶)
10270ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 = (Base‘𝐸))
103101, 102sseqtrd 3967 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘𝐸))
104 eqidd 2734 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
10572ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐺 ⊆ (Base‘𝐸))
106104, 105srabase 21120 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
107103, 106sseqtrd 3967 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
10861ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
10989, 90lspssv 20925 . . . . . . . 8 ((((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
110108, 107, 109syl2anc 584 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
111 fldextrspunfld.k . . . . . . . . . . . . 13 𝐾 = (𝐿s 𝐹)
11240adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐿 ∈ Field)
11314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐼))
1145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐽))
11511adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubDRing‘𝐿))
1161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ∈ (SubDRing‘𝐿))
117 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
118 fldsdrgfld 20722 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ Field ∧ 𝐻 ∈ (SubDRing‘𝐿)) → (𝐿s 𝐻) ∈ Field)
11940, 1, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿s 𝐻) ∈ Field)
1202, 119eqeltrid 2837 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐽 ∈ Field)
121 ressabs 17166 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐻) → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1221, 30, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1232oveq1i 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝐽s 𝐹) = ((𝐿s 𝐻) ↾s 𝐹)
124122, 123, 1113eqtr4g 2793 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = 𝐾)
125 fldsdrgfld 20722 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐽)) → (𝐽s 𝐹) ∈ Field)
126120, 5, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) ∈ Field)
127124, 126eqeltrrd 2834 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
12830, 27sstrd 3941 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (Base‘𝐿))
129111, 25ressbas2 17156 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ⊆ (Base‘𝐿) → 𝐹 = (Base‘𝐾))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (Base‘𝐾))
131130oveq2d 7371 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = (𝐽s (Base‘𝐾)))
132124, 131eqtr3d 2770 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (𝐽s (Base‘𝐾)))
133130, 33eqeltrrd 2834 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐽))
134 brfldext 33730 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Field ∧ 𝐾 ∈ Field) → (𝐽/FldExt𝐾 ↔ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))))
135134biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))) → 𝐽/FldExt𝐾)
136120, 127, 132, 133, 135syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽/FldExt𝐾)
137136adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐽/FldExt𝐾)
138 extdgval 33738 . . . . . . . . . . . . . . . . 17 (𝐽/FldExt𝐾 → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
139137, 138syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
140130fveq2d 6835 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘(Base‘𝐾)))
141140fveq2d 6835 . . . . . . . . . . . . . . . . 17 (𝜑 → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
142141adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
14337dimval 33685 . . . . . . . . . . . . . . . . 17 ((((subringAlg ‘𝐽)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
14436, 143sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
145139, 142, 1443eqtr2d 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (♯‘𝑏))
146 fldextrspunfld.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
147146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) ∈ ℕ0)
148145, 147eqeltrrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (♯‘𝑏) ∈ ℕ0)
149 hashclb 14272 . . . . . . . . . . . . . . 15 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
150149biimpar 477 . . . . . . . . . . . . . 14 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
151117, 148, 150syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ Fin)
152111, 17, 2, 112, 113, 114, 115, 116, 48, 50, 55, 117, 151fldextrspunlsp 33759 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
153152eqimssd 3987 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
15425, 55, 68, 54, 40resssra 33671 . . . . . . . . . . . . . . 15 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
155154fveq2d 6835 . . . . . . . . . . . . . 14 (𝜑 → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
156155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
157156fveq1d 6833 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏))
158115, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubRing‘𝐿))
159 eqid 2733 . . . . . . . . . . . . . . 15 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
160159sralmod 21130 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
161158, 160syl 17 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
162117, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
16396adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
164162, 163sseqtrrd 3968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐻)
165116, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ⊆ (Base‘𝐿))
166164, 165sstrd 3941 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘𝐿))
167 eqidd 2734 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
168167, 46srabase 21120 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
169168adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
170166, 169sseqtrd 3967 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
171 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
172 eqid 2733 . . . . . . . . . . . . . . . 16 (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) = (LSubSp‘((subringAlg ‘𝐿)‘𝐺))
173 eqid 2733 . . . . . . . . . . . . . . . 16 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
174171, 172, 173lspcl 20918 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
175161, 170, 174syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
176152, 175eqeltrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
17799adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻𝐶)
178164, 177sstrd 3941 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐶)
179 eqid 2733 . . . . . . . . . . . . . 14 (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)
180 eqid 2733 . . . . . . . . . . . . . 14 (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
181179, 173, 180, 172lsslsp 20957 . . . . . . . . . . . . 13 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) ∧ 𝑏𝐶) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
182161, 176, 178, 181syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
183157, 182eqtr2d 2769 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) = ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
184153, 183sseqtrd 3967 . . . . . . . . . 10 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
185184adantr 480 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
186102, 185eqsstrrd 3966 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
187106, 186eqsstrrd 3966 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘((subringAlg ‘𝐸)‘𝐺)) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
188110, 187eqssd 3948 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
18989, 81, 90, 85, 86, 107, 188lbslelsp 33682 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (♯‘𝑐) ≤ (♯‘𝑏))
19088, 189eqbrtrd 5117 . . . 4 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
19184, 190n0limd 32472 . . 3 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
192191, 145breqtrrd 5123 . 2 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
19339, 192n0limd 32472 1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cun 3896  wss 3898  c0 4282   class class class wbr 5095  cfv 6489  (class class class)co 7355  Fincfn 8879  cle 11158  0cn0 12392  chash 14244  Basecbs 17127  s cress 17148  Scalarcsca 17171  SubRingcsubrg 20493  RingSpancrgspn 20534  IDomncidom 20617  DivRingcdr 20653  Fieldcfield 20654  SubDRingcsdrg 20710  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913  LBasisclbs 21017  LVecclvec 21045  subringAlg csra 21114  dimcldim 33683  /FldExtcfldext 33723  [:]cextdg 33725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9489  ax-inf2 9542  ax-ac2 10365  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-rpss 7665  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-inf 9338  df-oi 9407  df-r1 9668  df-rank 9669  df-dju 9805  df-card 9843  df-acn 9846  df-ac 10018  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-word 14428  df-lsw 14477  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-s2 14762  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ocomp 17189  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-mri 17498  df-acs 17499  df-proset 18208  df-drs 18209  df-poset 18227  df-ipo 18442  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-nzr 20437  df-subrng 20470  df-subrg 20494  df-rgspn 20535  df-rlreg 20618  df-domn 20619  df-idom 20620  df-drng 20655  df-field 20656  df-sdrg 20711  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lmhm 20965  df-lbs 21018  df-lvec 21046  df-sra 21116  df-rgmod 21117  df-cnfld 21301  df-zring 21393  df-dsmm 21678  df-frlm 21693  df-uvc 21729  df-ind 32858  df-dim 33684  df-fldext 33726  df-extdg 33727
This theorem is referenced by:  fldextrspunfld  33761  fldextrspundgle  33763
  Copyright terms: Public domain W3C validator