Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlem1 Structured version   Visualization version   GIF version

Theorem fldextrspunlem1 33661
Description: Lemma for fldextrspunfld 33662. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunlem1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))

Proof of Theorem fldextrspunlem1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
2 fldextrspunfld.j . . . . . 6 𝐽 = (𝐿s 𝐻)
32sdrgdrng 20694 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑𝐽 ∈ DivRing)
5 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6 eqid 2729 . . . . . 6 (𝐽s 𝐹) = (𝐽s 𝐹)
76sdrgdrng 20694 . . . . 5 (𝐹 ∈ (SubDRing‘𝐽) → (𝐽s 𝐹) ∈ DivRing)
85, 7syl 17 . . . 4 (𝜑 → (𝐽s 𝐹) ∈ DivRing)
9 sdrgsubrg 20695 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
101, 9syl 17 . . . . 5 (𝜑𝐻 ∈ (SubRing‘𝐿))
11 fldextrspunfld.5 . . . . . . . 8 (𝜑𝐺 ∈ (SubDRing‘𝐿))
12 sdrgsubrg 20695 . . . . . . . 8 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1311, 12syl 17 . . . . . . 7 (𝜑𝐺 ∈ (SubRing‘𝐿))
14 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 sdrgsubrg 20695 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐼))
17 fldextrspunfld.i . . . . . . . . 9 𝐼 = (𝐿s 𝐺)
1817subsubrg 20502 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐼) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺)))
1918biimpa 476 . . . . . . 7 ((𝐺 ∈ (SubRing‘𝐿) ∧ 𝐹 ∈ (SubRing‘𝐼)) → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2013, 16, 19syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2120simpld 494 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
22 eqid 2729 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
2322sdrgss 20697 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
245, 23syl 17 . . . . . 6 (𝜑𝐹 ⊆ (Base‘𝐽))
25 eqid 2729 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2625sdrgss 20697 . . . . . . . 8 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
271, 26syl 17 . . . . . . 7 (𝜑𝐻 ⊆ (Base‘𝐿))
282, 25ressbas2 17168 . . . . . . 7 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
2927, 28syl 17 . . . . . 6 (𝜑𝐻 = (Base‘𝐽))
3024, 29sseqtrrd 3975 . . . . 5 (𝜑𝐹𝐻)
312subsubrg 20502 . . . . . 6 (𝐻 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐽) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)))
3231biimpar 477 . . . . 5 ((𝐻 ∈ (SubRing‘𝐿) ∧ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)) → 𝐹 ∈ (SubRing‘𝐽))
3310, 21, 30, 32syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐽))
34 eqid 2729 . . . . 5 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
3534, 6sralvec 33570 . . . 4 ((𝐽 ∈ DivRing ∧ (𝐽s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐽)) → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
364, 8, 33, 35syl3anc 1373 . . 3 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
37 eqid 2729 . . . 4 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
3837lbsex 21091 . . 3 (((subringAlg ‘𝐽)‘𝐹) ∈ LVec → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
3936, 38syl 17 . 2 (𝜑 → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
40 fldextrspunfld.2 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Field)
41 fldidom 20675 . . . . . . . . . . . 12 (𝐿 ∈ Field → 𝐿 ∈ IDomn)
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝐿 ∈ IDomn)
4342idomringd 20632 . . . . . . . . . 10 (𝜑𝐿 ∈ Ring)
44 eqidd 2730 . . . . . . . . . 10 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
4525sdrgss 20697 . . . . . . . . . . . 12 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
4611, 45syl 17 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (Base‘𝐿))
4746, 27unssd 4145 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
48 fldextrspunfld.n . . . . . . . . . . 11 𝑁 = (RingSpan‘𝐿)
4948a1i 11 . . . . . . . . . 10 (𝜑𝑁 = (RingSpan‘𝐿))
50 fldextrspunfld.c . . . . . . . . . . 11 𝐶 = (𝑁‘(𝐺𝐻))
5150a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
5243, 44, 47, 49, 51rgspncl 20517 . . . . . . . . 9 (𝜑𝐶 ∈ (SubRing‘𝐿))
5343, 44, 47, 49, 51rgspnssid 20518 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
5453unssad 4146 . . . . . . . . 9 (𝜑𝐺𝐶)
55 fldextrspunfld.e . . . . . . . . . . 11 𝐸 = (𝐿s 𝐶)
5655subsubrg 20502 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
5756biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
5852, 13, 54, 57syl12anc 836 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐸))
59 eqid 2729 . . . . . . . . 9 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
6059sralmod 21110 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
6158, 60syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
62 ressabs 17178 . . . . . . . . . . 11 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6352, 54, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6455oveq1i 7363 . . . . . . . . . 10 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
6563, 64, 173eqtr4g 2789 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = 𝐼)
66 eqidd 2730 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
6725subrgss 20476 . . . . . . . . . . . . . 14 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
6852, 67syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ (Base‘𝐿))
6955, 25ressbas2 17168 . . . . . . . . . . . . 13 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
7068, 69syl 17 . . . . . . . . . . . 12 (𝜑𝐶 = (Base‘𝐸))
7153, 70sseqtrd 3974 . . . . . . . . . . 11 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐸))
7271unssad 4146 . . . . . . . . . 10 (𝜑𝐺 ⊆ (Base‘𝐸))
7366, 72srasca 21103 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7465, 73eqtr3d 2766 . . . . . . . 8 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7517sdrgdrng 20694 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
7611, 75syl 17 . . . . . . . 8 (𝜑𝐼 ∈ DivRing)
7774, 76eqeltrrd 2829 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
78 eqid 2729 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
7978islvec 21027 . . . . . . 7 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
8061, 77, 79sylanbrc 583 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
81 eqid 2729 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘𝐺)) = (LBasis‘((subringAlg ‘𝐸)‘𝐺))
8281lbsex 21091 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8380, 82syl 17 . . . . 5 (𝜑 → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8483adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8580ad2antrr 726 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
86 simpr 484 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺)))
8781dimval 33586 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐺) ∈ LVec ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
8885, 86, 87syl2anc 584 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
89 eqid 2729 . . . . . 6 (Base‘((subringAlg ‘𝐸)‘𝐺)) = (Base‘((subringAlg ‘𝐸)‘𝐺))
90 eqid 2729 . . . . . 6 (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘((subringAlg ‘𝐸)‘𝐺))
91 eqid 2729 . . . . . . . . . . . 12 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
9291, 37lbsss 21000 . . . . . . . . . . 11 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
9392ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
94 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
9594, 24srabase 21100 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9629, 95eqtrd 2764 . . . . . . . . . . 11 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9796ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9893, 97sseqtrrd 3975 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐻)
9953unssbd 4147 . . . . . . . . . 10 (𝜑𝐻𝐶)
10099ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻𝐶)
10198, 100sstrd 3948 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐶)
10270ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 = (Base‘𝐸))
103101, 102sseqtrd 3974 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘𝐸))
104 eqidd 2730 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
10572ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐺 ⊆ (Base‘𝐸))
106104, 105srabase 21100 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
107103, 106sseqtrd 3974 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
10861ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
10989, 90lspssv 20905 . . . . . . . 8 ((((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
110108, 107, 109syl2anc 584 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
111 fldextrspunfld.k . . . . . . . . . . . . 13 𝐾 = (𝐿s 𝐹)
11240adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐿 ∈ Field)
11314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐼))
1145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐽))
11511adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubDRing‘𝐿))
1161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ∈ (SubDRing‘𝐿))
117 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
118 fldsdrgfld 20702 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ Field ∧ 𝐻 ∈ (SubDRing‘𝐿)) → (𝐿s 𝐻) ∈ Field)
11940, 1, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿s 𝐻) ∈ Field)
1202, 119eqeltrid 2832 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐽 ∈ Field)
121 ressabs 17178 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐻) → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1221, 30, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1232oveq1i 7363 . . . . . . . . . . . . . . . . . . . . 21 (𝐽s 𝐹) = ((𝐿s 𝐻) ↾s 𝐹)
124122, 123, 1113eqtr4g 2789 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = 𝐾)
125 fldsdrgfld 20702 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐽)) → (𝐽s 𝐹) ∈ Field)
126120, 5, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) ∈ Field)
127124, 126eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
12830, 27sstrd 3948 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (Base‘𝐿))
129111, 25ressbas2 17168 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ⊆ (Base‘𝐿) → 𝐹 = (Base‘𝐾))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (Base‘𝐾))
131130oveq2d 7369 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = (𝐽s (Base‘𝐾)))
132124, 131eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (𝐽s (Base‘𝐾)))
133130, 33eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐽))
134 brfldext 33631 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Field ∧ 𝐾 ∈ Field) → (𝐽/FldExt𝐾 ↔ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))))
135134biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))) → 𝐽/FldExt𝐾)
136120, 127, 132, 133, 135syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽/FldExt𝐾)
137136adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐽/FldExt𝐾)
138 extdgval 33639 . . . . . . . . . . . . . . . . 17 (𝐽/FldExt𝐾 → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
139137, 138syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
140130fveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘(Base‘𝐾)))
141140fveq2d 6830 . . . . . . . . . . . . . . . . 17 (𝜑 → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
142141adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
14337dimval 33586 . . . . . . . . . . . . . . . . 17 ((((subringAlg ‘𝐽)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
14436, 143sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
145139, 142, 1443eqtr2d 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (♯‘𝑏))
146 fldextrspunfld.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
147146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) ∈ ℕ0)
148145, 147eqeltrrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (♯‘𝑏) ∈ ℕ0)
149 hashclb 14284 . . . . . . . . . . . . . . 15 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
150149biimpar 477 . . . . . . . . . . . . . 14 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
151117, 148, 150syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ Fin)
152111, 17, 2, 112, 113, 114, 115, 116, 48, 50, 55, 117, 151fldextrspunlsp 33660 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
153152eqimssd 3994 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
15425, 55, 68, 54, 40resssra 33572 . . . . . . . . . . . . . . 15 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
155154fveq2d 6830 . . . . . . . . . . . . . 14 (𝜑 → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
156155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
157156fveq1d 6828 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏))
158115, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubRing‘𝐿))
159 eqid 2729 . . . . . . . . . . . . . . 15 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
160159sralmod 21110 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
161158, 160syl 17 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
162117, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
16396adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
164162, 163sseqtrrd 3975 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐻)
165116, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ⊆ (Base‘𝐿))
166164, 165sstrd 3948 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘𝐿))
167 eqidd 2730 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
168167, 46srabase 21100 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
169168adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
170166, 169sseqtrd 3974 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
171 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
172 eqid 2729 . . . . . . . . . . . . . . . 16 (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) = (LSubSp‘((subringAlg ‘𝐿)‘𝐺))
173 eqid 2729 . . . . . . . . . . . . . . . 16 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
174171, 172, 173lspcl 20898 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
175161, 170, 174syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
176152, 175eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
17799adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻𝐶)
178164, 177sstrd 3948 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐶)
179 eqid 2729 . . . . . . . . . . . . . 14 (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)
180 eqid 2729 . . . . . . . . . . . . . 14 (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
181179, 173, 180, 172lsslsp 20937 . . . . . . . . . . . . 13 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) ∧ 𝑏𝐶) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
182161, 176, 178, 181syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
183157, 182eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) = ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
184153, 183sseqtrd 3974 . . . . . . . . . 10 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
185184adantr 480 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
186102, 185eqsstrrd 3973 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
187106, 186eqsstrrd 3973 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘((subringAlg ‘𝐸)‘𝐺)) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
188110, 187eqssd 3955 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
18989, 81, 90, 85, 86, 107, 188lbslelsp 33583 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (♯‘𝑐) ≤ (♯‘𝑏))
19088, 189eqbrtrd 5117 . . . 4 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
19184, 190n0limd 32435 . . 3 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
192191, 145breqtrrd 5123 . 2 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
19339, 192n0limd 32435 1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cun 3903  wss 3905  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cle 11169  0cn0 12403  chash 14256  Basecbs 17139  s cress 17160  Scalarcsca 17183  SubRingcsubrg 20473  RingSpancrgspn 20514  IDomncidom 20597  DivRingcdr 20633  Fieldcfield 20634  SubDRingcsdrg 20690  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893  LBasisclbs 20997  LVecclvec 21025  subringAlg csra 21094  dimcldim 33584  /FldExtcfldext 33624  [:]cextdg 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-word 14440  df-lsw 14489  df-concat 14497  df-s1 14522  df-substr 14567  df-pfx 14597  df-s2 14774  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ocomp 17201  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-mre 17507  df-mrc 17508  df-mri 17509  df-acs 17510  df-proset 18219  df-drs 18220  df-poset 18238  df-ipo 18453  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-nzr 20417  df-subrng 20450  df-subrg 20474  df-rgspn 20515  df-rlreg 20598  df-domn 20599  df-idom 20600  df-drng 20635  df-field 20636  df-sdrg 20691  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945  df-lbs 20998  df-lvec 21026  df-sra 21096  df-rgmod 21097  df-cnfld 21281  df-zring 21373  df-dsmm 21658  df-frlm 21673  df-uvc 21709  df-ind 32813  df-dim 33585  df-fldext 33627  df-extdg 33628
This theorem is referenced by:  fldextrspunfld  33662  fldextrspundgle  33664
  Copyright terms: Public domain W3C validator