Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlem1 Structured version   Visualization version   GIF version

Theorem fldextrspunlem1 33680
Description: Lemma for fldextrspunfld 33681. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunlem1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))

Proof of Theorem fldextrspunlem1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
2 fldextrspunfld.j . . . . . 6 𝐽 = (𝐿s 𝐻)
32sdrgdrng 20700 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑𝐽 ∈ DivRing)
5 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6 eqid 2731 . . . . . 6 (𝐽s 𝐹) = (𝐽s 𝐹)
76sdrgdrng 20700 . . . . 5 (𝐹 ∈ (SubDRing‘𝐽) → (𝐽s 𝐹) ∈ DivRing)
85, 7syl 17 . . . 4 (𝜑 → (𝐽s 𝐹) ∈ DivRing)
9 sdrgsubrg 20701 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
101, 9syl 17 . . . . 5 (𝜑𝐻 ∈ (SubRing‘𝐿))
11 fldextrspunfld.5 . . . . . . . 8 (𝜑𝐺 ∈ (SubDRing‘𝐿))
12 sdrgsubrg 20701 . . . . . . . 8 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1311, 12syl 17 . . . . . . 7 (𝜑𝐺 ∈ (SubRing‘𝐿))
14 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 sdrgsubrg 20701 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐼))
17 fldextrspunfld.i . . . . . . . . 9 𝐼 = (𝐿s 𝐺)
1817subsubrg 20508 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐼) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺)))
1918biimpa 476 . . . . . . 7 ((𝐺 ∈ (SubRing‘𝐿) ∧ 𝐹 ∈ (SubRing‘𝐼)) → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2013, 16, 19syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2120simpld 494 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
22 eqid 2731 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
2322sdrgss 20703 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
245, 23syl 17 . . . . . 6 (𝜑𝐹 ⊆ (Base‘𝐽))
25 eqid 2731 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2625sdrgss 20703 . . . . . . . 8 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
271, 26syl 17 . . . . . . 7 (𝜑𝐻 ⊆ (Base‘𝐿))
282, 25ressbas2 17144 . . . . . . 7 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
2927, 28syl 17 . . . . . 6 (𝜑𝐻 = (Base‘𝐽))
3024, 29sseqtrrd 3967 . . . . 5 (𝜑𝐹𝐻)
312subsubrg 20508 . . . . . 6 (𝐻 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐽) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)))
3231biimpar 477 . . . . 5 ((𝐻 ∈ (SubRing‘𝐿) ∧ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)) → 𝐹 ∈ (SubRing‘𝐽))
3310, 21, 30, 32syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐽))
34 eqid 2731 . . . . 5 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
3534, 6sralvec 33589 . . . 4 ((𝐽 ∈ DivRing ∧ (𝐽s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐽)) → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
364, 8, 33, 35syl3anc 1373 . . 3 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
37 eqid 2731 . . . 4 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
3837lbsex 21097 . . 3 (((subringAlg ‘𝐽)‘𝐹) ∈ LVec → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
3936, 38syl 17 . 2 (𝜑 → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
40 fldextrspunfld.2 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Field)
41 fldidom 20681 . . . . . . . . . . . 12 (𝐿 ∈ Field → 𝐿 ∈ IDomn)
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝐿 ∈ IDomn)
4342idomringd 20638 . . . . . . . . . 10 (𝜑𝐿 ∈ Ring)
44 eqidd 2732 . . . . . . . . . 10 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
4525sdrgss 20703 . . . . . . . . . . . 12 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
4611, 45syl 17 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (Base‘𝐿))
4746, 27unssd 4137 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
48 fldextrspunfld.n . . . . . . . . . . 11 𝑁 = (RingSpan‘𝐿)
4948a1i 11 . . . . . . . . . 10 (𝜑𝑁 = (RingSpan‘𝐿))
50 fldextrspunfld.c . . . . . . . . . . 11 𝐶 = (𝑁‘(𝐺𝐻))
5150a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
5243, 44, 47, 49, 51rgspncl 20523 . . . . . . . . 9 (𝜑𝐶 ∈ (SubRing‘𝐿))
5343, 44, 47, 49, 51rgspnssid 20524 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
5453unssad 4138 . . . . . . . . 9 (𝜑𝐺𝐶)
55 fldextrspunfld.e . . . . . . . . . . 11 𝐸 = (𝐿s 𝐶)
5655subsubrg 20508 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
5756biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
5852, 13, 54, 57syl12anc 836 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐸))
59 eqid 2731 . . . . . . . . 9 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
6059sralmod 21116 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
6158, 60syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
62 ressabs 17154 . . . . . . . . . . 11 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6352, 54, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6455oveq1i 7351 . . . . . . . . . 10 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
6563, 64, 173eqtr4g 2791 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = 𝐼)
66 eqidd 2732 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
6725subrgss 20482 . . . . . . . . . . . . . 14 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
6852, 67syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ (Base‘𝐿))
6955, 25ressbas2 17144 . . . . . . . . . . . . 13 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
7068, 69syl 17 . . . . . . . . . . . 12 (𝜑𝐶 = (Base‘𝐸))
7153, 70sseqtrd 3966 . . . . . . . . . . 11 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐸))
7271unssad 4138 . . . . . . . . . 10 (𝜑𝐺 ⊆ (Base‘𝐸))
7366, 72srasca 21109 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7465, 73eqtr3d 2768 . . . . . . . 8 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7517sdrgdrng 20700 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
7611, 75syl 17 . . . . . . . 8 (𝜑𝐼 ∈ DivRing)
7774, 76eqeltrrd 2832 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
78 eqid 2731 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
7978islvec 21033 . . . . . . 7 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
8061, 77, 79sylanbrc 583 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
81 eqid 2731 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘𝐺)) = (LBasis‘((subringAlg ‘𝐸)‘𝐺))
8281lbsex 21097 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8380, 82syl 17 . . . . 5 (𝜑 → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8483adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8580ad2antrr 726 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
86 simpr 484 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺)))
8781dimval 33605 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐺) ∈ LVec ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
8885, 86, 87syl2anc 584 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
89 eqid 2731 . . . . . 6 (Base‘((subringAlg ‘𝐸)‘𝐺)) = (Base‘((subringAlg ‘𝐸)‘𝐺))
90 eqid 2731 . . . . . 6 (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘((subringAlg ‘𝐸)‘𝐺))
91 eqid 2731 . . . . . . . . . . . 12 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
9291, 37lbsss 21006 . . . . . . . . . . 11 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
9392ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
94 eqidd 2732 . . . . . . . . . . . . 13 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
9594, 24srabase 21106 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9629, 95eqtrd 2766 . . . . . . . . . . 11 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9796ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9893, 97sseqtrrd 3967 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐻)
9953unssbd 4139 . . . . . . . . . 10 (𝜑𝐻𝐶)
10099ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻𝐶)
10198, 100sstrd 3940 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐶)
10270ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 = (Base‘𝐸))
103101, 102sseqtrd 3966 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘𝐸))
104 eqidd 2732 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
10572ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐺 ⊆ (Base‘𝐸))
106104, 105srabase 21106 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
107103, 106sseqtrd 3966 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
10861ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
10989, 90lspssv 20911 . . . . . . . 8 ((((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
110108, 107, 109syl2anc 584 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
111 fldextrspunfld.k . . . . . . . . . . . . 13 𝐾 = (𝐿s 𝐹)
11240adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐿 ∈ Field)
11314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐼))
1145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐽))
11511adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubDRing‘𝐿))
1161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ∈ (SubDRing‘𝐿))
117 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
118 fldsdrgfld 20708 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ Field ∧ 𝐻 ∈ (SubDRing‘𝐿)) → (𝐿s 𝐻) ∈ Field)
11940, 1, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿s 𝐻) ∈ Field)
1202, 119eqeltrid 2835 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐽 ∈ Field)
121 ressabs 17154 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐻) → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1221, 30, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1232oveq1i 7351 . . . . . . . . . . . . . . . . . . . . 21 (𝐽s 𝐹) = ((𝐿s 𝐻) ↾s 𝐹)
124122, 123, 1113eqtr4g 2791 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = 𝐾)
125 fldsdrgfld 20708 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐽)) → (𝐽s 𝐹) ∈ Field)
126120, 5, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) ∈ Field)
127124, 126eqeltrrd 2832 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
12830, 27sstrd 3940 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (Base‘𝐿))
129111, 25ressbas2 17144 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ⊆ (Base‘𝐿) → 𝐹 = (Base‘𝐾))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (Base‘𝐾))
131130oveq2d 7357 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = (𝐽s (Base‘𝐾)))
132124, 131eqtr3d 2768 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (𝐽s (Base‘𝐾)))
133130, 33eqeltrrd 2832 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐽))
134 brfldext 33650 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Field ∧ 𝐾 ∈ Field) → (𝐽/FldExt𝐾 ↔ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))))
135134biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))) → 𝐽/FldExt𝐾)
136120, 127, 132, 133, 135syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽/FldExt𝐾)
137136adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐽/FldExt𝐾)
138 extdgval 33658 . . . . . . . . . . . . . . . . 17 (𝐽/FldExt𝐾 → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
139137, 138syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
140130fveq2d 6821 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘(Base‘𝐾)))
141140fveq2d 6821 . . . . . . . . . . . . . . . . 17 (𝜑 → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
142141adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
14337dimval 33605 . . . . . . . . . . . . . . . . 17 ((((subringAlg ‘𝐽)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
14436, 143sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
145139, 142, 1443eqtr2d 2772 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (♯‘𝑏))
146 fldextrspunfld.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
147146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) ∈ ℕ0)
148145, 147eqeltrrd 2832 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (♯‘𝑏) ∈ ℕ0)
149 hashclb 14260 . . . . . . . . . . . . . . 15 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
150149biimpar 477 . . . . . . . . . . . . . 14 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
151117, 148, 150syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ Fin)
152111, 17, 2, 112, 113, 114, 115, 116, 48, 50, 55, 117, 151fldextrspunlsp 33679 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
153152eqimssd 3986 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
15425, 55, 68, 54, 40resssra 33591 . . . . . . . . . . . . . . 15 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
155154fveq2d 6821 . . . . . . . . . . . . . 14 (𝜑 → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
156155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
157156fveq1d 6819 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏))
158115, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubRing‘𝐿))
159 eqid 2731 . . . . . . . . . . . . . . 15 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
160159sralmod 21116 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
161158, 160syl 17 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
162117, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
16396adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
164162, 163sseqtrrd 3967 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐻)
165116, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ⊆ (Base‘𝐿))
166164, 165sstrd 3940 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘𝐿))
167 eqidd 2732 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
168167, 46srabase 21106 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
169168adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
170166, 169sseqtrd 3966 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
171 eqid 2731 . . . . . . . . . . . . . . . 16 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
172 eqid 2731 . . . . . . . . . . . . . . . 16 (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) = (LSubSp‘((subringAlg ‘𝐿)‘𝐺))
173 eqid 2731 . . . . . . . . . . . . . . . 16 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
174171, 172, 173lspcl 20904 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
175161, 170, 174syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
176152, 175eqeltrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
17799adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻𝐶)
178164, 177sstrd 3940 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐶)
179 eqid 2731 . . . . . . . . . . . . . 14 (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)
180 eqid 2731 . . . . . . . . . . . . . 14 (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
181179, 173, 180, 172lsslsp 20943 . . . . . . . . . . . . 13 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) ∧ 𝑏𝐶) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
182161, 176, 178, 181syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
183157, 182eqtr2d 2767 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) = ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
184153, 183sseqtrd 3966 . . . . . . . . . 10 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
185184adantr 480 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
186102, 185eqsstrrd 3965 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
187106, 186eqsstrrd 3965 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘((subringAlg ‘𝐸)‘𝐺)) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
188110, 187eqssd 3947 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
18989, 81, 90, 85, 86, 107, 188lbslelsp 33602 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (♯‘𝑐) ≤ (♯‘𝑏))
19088, 189eqbrtrd 5108 . . . 4 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
19184, 190n0limd 32443 . . 3 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
192191, 145breqtrrd 5114 . 2 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
19339, 192n0limd 32443 1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cun 3895  wss 3897  c0 4278   class class class wbr 5086  cfv 6476  (class class class)co 7341  Fincfn 8864  cle 11142  0cn0 12376  chash 14232  Basecbs 17115  s cress 17136  Scalarcsca 17159  SubRingcsubrg 20479  RingSpancrgspn 20520  IDomncidom 20603  DivRingcdr 20639  Fieldcfield 20640  SubDRingcsdrg 20696  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899  LBasisclbs 21003  LVecclvec 21031  subringAlg csra 21100  dimcldim 33603  /FldExtcfldext 33643  [:]cextdg 33645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-r1 9652  df-rank 9653  df-dju 9789  df-card 9827  df-acn 9830  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-s2 14750  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ocomp 17177  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-mri 17485  df-acs 17486  df-proset 18195  df-drs 18196  df-poset 18214  df-ipo 18429  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-nzr 20423  df-subrng 20456  df-subrg 20480  df-rgspn 20521  df-rlreg 20604  df-domn 20605  df-idom 20606  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-lbs 21004  df-lvec 21032  df-sra 21102  df-rgmod 21103  df-cnfld 21287  df-zring 21379  df-dsmm 21664  df-frlm 21679  df-uvc 21715  df-ind 32824  df-dim 33604  df-fldext 33646  df-extdg 33647
This theorem is referenced by:  fldextrspunfld  33681  fldextrspundgle  33683
  Copyright terms: Public domain W3C validator