Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlem1 Structured version   Visualization version   GIF version

Theorem fldextrspunlem1 33643
Description: Lemma for fldextrspunfld 33644. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunlem1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))

Proof of Theorem fldextrspunlem1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
2 fldextrspunfld.j . . . . . 6 𝐽 = (𝐿s 𝐻)
32sdrgdrng 20675 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑𝐽 ∈ DivRing)
5 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6 eqid 2729 . . . . . 6 (𝐽s 𝐹) = (𝐽s 𝐹)
76sdrgdrng 20675 . . . . 5 (𝐹 ∈ (SubDRing‘𝐽) → (𝐽s 𝐹) ∈ DivRing)
85, 7syl 17 . . . 4 (𝜑 → (𝐽s 𝐹) ∈ DivRing)
9 sdrgsubrg 20676 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
101, 9syl 17 . . . . 5 (𝜑𝐻 ∈ (SubRing‘𝐿))
11 fldextrspunfld.5 . . . . . . . 8 (𝜑𝐺 ∈ (SubDRing‘𝐿))
12 sdrgsubrg 20676 . . . . . . . 8 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
1311, 12syl 17 . . . . . . 7 (𝜑𝐺 ∈ (SubRing‘𝐿))
14 fldextrspunfld.3 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 sdrgsubrg 20676 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐼))
17 fldextrspunfld.i . . . . . . . . 9 𝐼 = (𝐿s 𝐺)
1817subsubrg 20483 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐼) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺)))
1918biimpa 476 . . . . . . 7 ((𝐺 ∈ (SubRing‘𝐿) ∧ 𝐹 ∈ (SubRing‘𝐼)) → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2013, 16, 19syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐺))
2120simpld 494 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
22 eqid 2729 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
2322sdrgss 20678 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
245, 23syl 17 . . . . . 6 (𝜑𝐹 ⊆ (Base‘𝐽))
25 eqid 2729 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2625sdrgss 20678 . . . . . . . 8 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
271, 26syl 17 . . . . . . 7 (𝜑𝐻 ⊆ (Base‘𝐿))
282, 25ressbas2 17184 . . . . . . 7 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
2927, 28syl 17 . . . . . 6 (𝜑𝐻 = (Base‘𝐽))
3024, 29sseqtrrd 3981 . . . . 5 (𝜑𝐹𝐻)
312subsubrg 20483 . . . . . 6 (𝐻 ∈ (SubRing‘𝐿) → (𝐹 ∈ (SubRing‘𝐽) ↔ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)))
3231biimpar 477 . . . . 5 ((𝐻 ∈ (SubRing‘𝐿) ∧ (𝐹 ∈ (SubRing‘𝐿) ∧ 𝐹𝐻)) → 𝐹 ∈ (SubRing‘𝐽))
3310, 21, 30, 32syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐽))
34 eqid 2729 . . . . 5 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
3534, 6sralvec 33554 . . . 4 ((𝐽 ∈ DivRing ∧ (𝐽s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐽)) → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
364, 8, 33, 35syl3anc 1373 . . 3 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LVec)
37 eqid 2729 . . . 4 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
3837lbsex 21051 . . 3 (((subringAlg ‘𝐽)‘𝐹) ∈ LVec → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
3936, 38syl 17 . 2 (𝜑 → (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ≠ ∅)
40 fldextrspunfld.2 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Field)
41 fldidom 20656 . . . . . . . . . . . 12 (𝐿 ∈ Field → 𝐿 ∈ IDomn)
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝐿 ∈ IDomn)
4342idomringd 20613 . . . . . . . . . 10 (𝜑𝐿 ∈ Ring)
44 eqidd 2730 . . . . . . . . . 10 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
4525sdrgss 20678 . . . . . . . . . . . 12 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
4611, 45syl 17 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (Base‘𝐿))
4746, 27unssd 4151 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
48 fldextrspunfld.n . . . . . . . . . . 11 𝑁 = (RingSpan‘𝐿)
4948a1i 11 . . . . . . . . . 10 (𝜑𝑁 = (RingSpan‘𝐿))
50 fldextrspunfld.c . . . . . . . . . . 11 𝐶 = (𝑁‘(𝐺𝐻))
5150a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
5243, 44, 47, 49, 51rgspncl 20498 . . . . . . . . 9 (𝜑𝐶 ∈ (SubRing‘𝐿))
5343, 44, 47, 49, 51rgspnssid 20499 . . . . . . . . . 10 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
5453unssad 4152 . . . . . . . . 9 (𝜑𝐺𝐶)
55 fldextrspunfld.e . . . . . . . . . . 11 𝐸 = (𝐿s 𝐶)
5655subsubrg 20483 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
5756biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
5852, 13, 54, 57syl12anc 836 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐸))
59 eqid 2729 . . . . . . . . 9 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
6059sralmod 21070 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
6158, 60syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
62 ressabs 17194 . . . . . . . . . . 11 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6352, 54, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
6455oveq1i 7379 . . . . . . . . . 10 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
6563, 64, 173eqtr4g 2789 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = 𝐼)
66 eqidd 2730 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
6725subrgss 20457 . . . . . . . . . . . . . 14 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
6852, 67syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ (Base‘𝐿))
6955, 25ressbas2 17184 . . . . . . . . . . . . 13 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
7068, 69syl 17 . . . . . . . . . . . 12 (𝜑𝐶 = (Base‘𝐸))
7153, 70sseqtrd 3980 . . . . . . . . . . 11 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐸))
7271unssad 4152 . . . . . . . . . 10 (𝜑𝐺 ⊆ (Base‘𝐸))
7366, 72srasca 21063 . . . . . . . . 9 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7465, 73eqtr3d 2766 . . . . . . . 8 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
7517sdrgdrng 20675 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
7611, 75syl 17 . . . . . . . 8 (𝜑𝐼 ∈ DivRing)
7774, 76eqeltrrd 2829 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
78 eqid 2729 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
7978islvec 20987 . . . . . . 7 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
8061, 77, 79sylanbrc 583 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
81 eqid 2729 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘𝐺)) = (LBasis‘((subringAlg ‘𝐸)‘𝐺))
8281lbsex 21051 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8380, 82syl 17 . . . . 5 (𝜑 → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8483adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LBasis‘((subringAlg ‘𝐸)‘𝐺)) ≠ ∅)
8580ad2antrr 726 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
86 simpr 484 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺)))
8781dimval 33569 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐺) ∈ LVec ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
8885, 86, 87syl2anc 584 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) = (♯‘𝑐))
89 eqid 2729 . . . . . 6 (Base‘((subringAlg ‘𝐸)‘𝐺)) = (Base‘((subringAlg ‘𝐸)‘𝐺))
90 eqid 2729 . . . . . 6 (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘((subringAlg ‘𝐸)‘𝐺))
91 eqid 2729 . . . . . . . . . . . 12 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
9291, 37lbsss 20960 . . . . . . . . . . 11 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
9392ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
94 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
9594, 24srabase 21060 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9629, 95eqtrd 2764 . . . . . . . . . . 11 (𝜑𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9796ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
9893, 97sseqtrrd 3981 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐻)
9953unssbd 4153 . . . . . . . . . 10 (𝜑𝐻𝐶)
10099ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐻𝐶)
10198, 100sstrd 3954 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏𝐶)
10270ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 = (Base‘𝐸))
103101, 102sseqtrd 3980 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘𝐸))
104 eqidd 2730 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
10572ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐺 ⊆ (Base‘𝐸))
106104, 105srabase 21060 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
107103, 106sseqtrd 3980 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
10861ad2antrr 726 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
10989, 90lspssv 20865 . . . . . . . 8 ((((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
110108, 107, 109syl2anc 584 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) ⊆ (Base‘((subringAlg ‘𝐸)‘𝐺)))
111 fldextrspunfld.k . . . . . . . . . . . . 13 𝐾 = (𝐿s 𝐹)
11240adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐿 ∈ Field)
11314adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐼))
1145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐹 ∈ (SubDRing‘𝐽))
11511adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubDRing‘𝐿))
1161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ∈ (SubDRing‘𝐿))
117 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
118 fldsdrgfld 20683 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ Field ∧ 𝐻 ∈ (SubDRing‘𝐿)) → (𝐿s 𝐻) ∈ Field)
11940, 1, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿s 𝐻) ∈ Field)
1202, 119eqeltrid 2832 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐽 ∈ Field)
121 ressabs 17194 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐻) → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1221, 30, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐿s 𝐻) ↾s 𝐹) = (𝐿s 𝐹))
1232oveq1i 7379 . . . . . . . . . . . . . . . . . . . . 21 (𝐽s 𝐹) = ((𝐿s 𝐻) ↾s 𝐹)
124122, 123, 1113eqtr4g 2789 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = 𝐾)
125 fldsdrgfld 20683 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐽)) → (𝐽s 𝐹) ∈ Field)
126120, 5, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) ∈ Field)
127124, 126eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
12830, 27sstrd 3954 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (Base‘𝐿))
129111, 25ressbas2 17184 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ⊆ (Base‘𝐿) → 𝐹 = (Base‘𝐾))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (Base‘𝐾))
131130oveq2d 7385 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽s 𝐹) = (𝐽s (Base‘𝐾)))
132124, 131eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (𝐽s (Base‘𝐾)))
133130, 33eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐽))
134 brfldext 33614 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Field ∧ 𝐾 ∈ Field) → (𝐽/FldExt𝐾 ↔ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))))
135134biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐽s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐽))) → 𝐽/FldExt𝐾)
136120, 127, 132, 133, 135syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽/FldExt𝐾)
137136adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐽/FldExt𝐾)
138 extdgval 33622 . . . . . . . . . . . . . . . . 17 (𝐽/FldExt𝐾 → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
139137, 138syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
140130fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘(Base‘𝐾)))
141140fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝜑 → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
142141adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (dim‘((subringAlg ‘𝐽)‘(Base‘𝐾))))
14337dimval 33569 . . . . . . . . . . . . . . . . 17 ((((subringAlg ‘𝐽)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
14436, 143sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐽)‘𝐹)) = (♯‘𝑏))
145139, 142, 1443eqtr2d 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) = (♯‘𝑏))
146 fldextrspunfld.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
147146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (𝐽[:]𝐾) ∈ ℕ0)
148145, 147eqeltrrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (♯‘𝑏) ∈ ℕ0)
149 hashclb 14299 . . . . . . . . . . . . . . 15 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
150149biimpar 477 . . . . . . . . . . . . . 14 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
151117, 148, 150syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ∈ Fin)
152111, 17, 2, 112, 113, 114, 115, 116, 48, 50, 55, 117, 151fldextrspunlsp 33642 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
153152eqimssd 4000 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
15425, 55, 68, 54, 40resssra 33556 . . . . . . . . . . . . . . 15 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
155154fveq2d 6844 . . . . . . . . . . . . . 14 (𝜑 → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
156155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (LSpan‘((subringAlg ‘𝐸)‘𝐺)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)))
157156fveq1d 6842 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏))
158115, 12syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐺 ∈ (SubRing‘𝐿))
159 eqid 2729 . . . . . . . . . . . . . . 15 ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺)
160159sralmod 21070 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubRing‘𝐿) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
161158, 160syl 17 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((subringAlg ‘𝐿)‘𝐺) ∈ LMod)
162117, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
16396adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 = (Base‘((subringAlg ‘𝐽)‘𝐹)))
164162, 163sseqtrrd 3981 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐻)
165116, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻 ⊆ (Base‘𝐿))
166164, 165sstrd 3954 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘𝐿))
167 eqidd 2730 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐿)‘𝐺) = ((subringAlg ‘𝐿)‘𝐺))
168167, 46srabase 21060 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
169168adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐺)))
170166, 169sseqtrd 3980 . . . . . . . . . . . . . . 15 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺)))
171 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘((subringAlg ‘𝐿)‘𝐺)) = (Base‘((subringAlg ‘𝐿)‘𝐺))
172 eqid 2729 . . . . . . . . . . . . . . . 16 (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) = (LSubSp‘((subringAlg ‘𝐿)‘𝐺))
173 eqid 2729 . . . . . . . . . . . . . . . 16 (LSpan‘((subringAlg ‘𝐿)‘𝐺)) = (LSpan‘((subringAlg ‘𝐿)‘𝐺))
174171, 172, 173lspcl 20858 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝑏 ⊆ (Base‘((subringAlg ‘𝐿)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
175161, 170, 174syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
176152, 175eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)))
17799adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐻𝐶)
178164, 177sstrd 3954 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝑏𝐶)
179 eqid 2729 . . . . . . . . . . . . . 14 (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶) = (((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)
180 eqid 2729 . . . . . . . . . . . . . 14 (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶)) = (LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))
181179, 173, 180, 172lsslsp 20897 . . . . . . . . . . . . 13 ((((subringAlg ‘𝐿)‘𝐺) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((subringAlg ‘𝐿)‘𝐺)) ∧ 𝑏𝐶) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
182161, 176, 178, 181syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘(((subringAlg ‘𝐿)‘𝐺) ↾s 𝐶))‘𝑏) = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏))
183157, 182eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝑏) = ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
184153, 183sseqtrd 3980 . . . . . . . . . 10 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
185184adantr 480 . . . . . . . . 9 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → 𝐶 ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
186102, 185eqsstrrd 3979 . . . . . . . 8 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘𝐸) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
187106, 186eqsstrrd 3979 . . . . . . 7 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (Base‘((subringAlg ‘𝐸)‘𝐺)) ⊆ ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏))
188110, 187eqssd 3961 . . . . . 6 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → ((LSpan‘((subringAlg ‘𝐸)‘𝐺))‘𝑏) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
18989, 81, 90, 85, 86, 107, 188lbslelsp 33566 . . . . 5 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (♯‘𝑐) ≤ (♯‘𝑏))
19088, 189eqbrtrd 5124 . . . 4 (((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑐 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐺))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
19184, 190n0limd 32374 . . 3 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (♯‘𝑏))
192191, 145breqtrrd 5130 . 2 ((𝜑𝑏 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
19339, 192n0limd 32374 1 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cun 3909  wss 3911  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cle 11185  0cn0 12418  chash 14271  Basecbs 17155  s cress 17176  Scalarcsca 17199  SubRingcsubrg 20454  RingSpancrgspn 20495  IDomncidom 20578  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853  LBasisclbs 20957  LVecclvec 20985  subringAlg csra 21054  dimcldim 33567  /FldExtcfldext 33607  [:]cextdg 33609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-s2 14790  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18231  df-drs 18232  df-poset 18250  df-ipo 18463  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rgspn 20496  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lmhm 20905  df-lbs 20958  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-zring 21333  df-dsmm 21617  df-frlm 21632  df-uvc 21668  df-ind 32747  df-dim 33568  df-fldext 33610  df-extdg 33611
This theorem is referenced by:  fldextrspunfld  33644  fldextrspundgle  33646
  Copyright terms: Public domain W3C validator