| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0moeu | Structured version Visualization version GIF version | ||
| Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.) |
| Ref | Expression |
|---|---|
| n0moeu | ⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4335 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃*𝑥 𝑥 ∈ 𝐴))) |
| 4 | df-eu 2567 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃*𝑥 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | bitr4di 289 | 1 ⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃*wmo 2536 ∃!weu 2566 ≠ wne 2931 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-eu 2567 df-clab 2713 df-cleq 2726 df-ne 2932 df-dif 3936 df-nul 4316 |
| This theorem is referenced by: minveclem4a 25419 |
| Copyright terms: Public domain | W3C validator |