Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0moeu | Structured version Visualization version GIF version |
Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.) |
Ref | Expression |
---|---|
n0moeu | ⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4235 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | biimpi 219 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
3 | 2 | biantrurd 536 | . 2 ⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃*𝑥 𝑥 ∈ 𝐴))) |
4 | df-eu 2570 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃*𝑥 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | bitr4di 292 | 1 ⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∃wex 1786 ∈ wcel 2114 ∃*wmo 2538 ∃!weu 2569 ≠ wne 2934 ∅c0 4211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-eu 2570 df-clab 2717 df-cleq 2730 df-ne 2935 df-dif 3846 df-nul 4212 |
This theorem is referenced by: minveclem4a 24182 |
Copyright terms: Public domain | W3C validator |