Step | Hyp | Ref
| Expression |
1 | | minvec.p |
. 2
⊢ 𝑃 = ∪
(𝐽 fLim (𝑋filGen𝐹)) |
2 | | ovex 7002 |
. . . . 5
⊢ (𝐽 fLim (𝑋filGen𝐹)) ∈ V |
3 | 2 | uniex 7277 |
. . . 4
⊢ ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ V |
4 | 3 | snid 4467 |
. . 3
⊢ ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ {∪ (𝐽
fLim (𝑋filGen𝐹))} |
5 | | minvec.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
6 | | cphngp 23474 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
7 | | ngpxms 22907 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈
∞MetSp) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |
9 | | minvec.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑈) |
10 | | minvec.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝑈) |
11 | | minvec.d |
. . . . . . . . . . . 12
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
12 | 9, 10, 11 | xmstopn 22758 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐽 = (MetOpen‘𝐷)) |
13 | 8, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) |
14 | 13 | oveq1d 6985 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ↾t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌)) |
15 | 10, 11 | xmsxmet 22763 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐷 ∈
(∞Met‘𝑋)) |
16 | 8, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
17 | | minvec.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
18 | | eqid 2772 |
. . . . . . . . . . . 12
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
19 | 10, 18 | lssss 19424 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
20 | 17, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
21 | | eqid 2772 |
. . . . . . . . . . 11
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
22 | | eqid 2772 |
. . . . . . . . . . 11
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
23 | | eqid 2772 |
. . . . . . . . . . 11
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
24 | 21, 22, 23 | metrest 22831 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
25 | 16, 20, 24 | syl2anc 576 |
. . . . . . . . 9
⊢ (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
26 | 14, 25 | eqtr2d 2809 |
. . . . . . . 8
⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽 ↾t 𝑌)) |
27 | | minvec.m |
. . . . . . . . . . . 12
⊢ − =
(-g‘𝑈) |
28 | | minvec.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (norm‘𝑈) |
29 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
30 | | minvec.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
31 | | minvec.r |
. . . . . . . . . . . 12
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
32 | | minvec.s |
. . . . . . . . . . . 12
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
33 | | minvec.f |
. . . . . . . . . . . 12
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
34 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3b 23728 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |
35 | | fgcl 22184 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌)) |
37 | 10 | fvexi 6507 |
. . . . . . . . . . 11
⊢ 𝑋 ∈ V |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ V) |
39 | | trfg 22197 |
. . . . . . . . . 10
⊢ (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹)) |
40 | 36, 20, 38, 39 | syl3anc 1351 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹)) |
41 | | fgabs 22185 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌 ⊆ 𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) |
42 | 34, 20, 41 | syl2anc 576 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) |
43 | 42 | oveq1d 6985 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌)) |
44 | 40, 43 | eqtr3d 2810 |
. . . . . . . 8
⊢ (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌)) |
45 | 26, 44 | oveq12d 6988 |
. . . . . . 7
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌))) |
46 | | xmstps 22760 |
. . . . . . . . . 10
⊢ (𝑈 ∈ ∞MetSp →
𝑈 ∈
TopSp) |
47 | 8, 46 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ TopSp) |
48 | 10, 9 | istps 21240 |
. . . . . . . . 9
⊢ (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
49 | 47, 48 | sylib 210 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
50 | | fbsspw 22138 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌) |
51 | 34, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑌) |
52 | | sspwb 5192 |
. . . . . . . . . . . 12
⊢ (𝑌 ⊆ 𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋) |
53 | 20, 52 | sylib 210 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
54 | 51, 53 | sstrd 3862 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑋) |
55 | | fbasweak 22171 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋)) |
56 | 34, 54, 38, 55 | syl3anc 1351 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑋)) |
57 | | fgcl 22184 |
. . . . . . . . 9
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
58 | 56, 57 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
59 | | filfbas 22154 |
. . . . . . . . . . . . 13
⊢ ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌)) |
60 | 34, 35, 59 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌)) |
61 | | fbsspw 22138 |
. . . . . . . . . . . . . 14
⊢ ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌) |
63 | 62, 53 | sstrd 3862 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋) |
64 | | fbasweak 22171 |
. . . . . . . . . . . 12
⊢ (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋)) |
65 | 60, 63, 38, 64 | syl3anc 1351 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋)) |
66 | | ssfg 22178 |
. . . . . . . . . . 11
⊢ ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹))) |
67 | 65, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹))) |
68 | 67, 42 | sseqtrd 3891 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹)) |
69 | | filtop 22161 |
. . . . . . . . . 10
⊢ ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹)) |
70 | 36, 69 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (𝑌filGen𝐹)) |
71 | 68, 70 | sseldd 3853 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑋filGen𝐹)) |
72 | | flimrest 22289 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
73 | 49, 58, 71, 72 | syl3anc 1351 |
. . . . . . 7
⊢ (𝜑 → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
74 | 45, 73 | eqtrd 2808 |
. . . . . 6
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
75 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11 | minveclem3a 23727 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
76 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3 23729 |
. . . . . . 7
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |
77 | 23 | cmetcvg 23585 |
. . . . . . 7
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅) |
78 | 75, 76, 77 | syl2anc 576 |
. . . . . 6
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅) |
79 | 74, 78 | eqnetrrd 3029 |
. . . . 5
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) |
80 | 79 | neneqd 2966 |
. . . 4
⊢ (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅) |
81 | | inss1 4086 |
. . . . . . 7
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) |
82 | 22 | methaus 22827 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus) |
83 | 15, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ∞MetSp →
(MetOpen‘𝐷) ∈
Haus) |
84 | 12, 83 | eqeltrd 2860 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐽 ∈
Haus) |
85 | | hausflimi 22286 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
86 | 8, 84, 85 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
87 | | ssn0 4234 |
. . . . . . . . . . . 12
⊢ ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅) |
88 | 81, 79, 87 | sylancr 578 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅) |
89 | | n0moeu 4196 |
. . . . . . . . . . 11
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))) |
90 | 88, 89 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))) |
91 | 86, 90 | mpbid 224 |
. . . . . . . . 9
⊢ (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
92 | | euen1b 8371 |
. . . . . . . . 9
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔
∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
93 | 91, 92 | sylibr 226 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o) |
94 | | en1b 8368 |
. . . . . . . 8
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
95 | 93, 94 | sylib 210 |
. . . . . . 7
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
96 | 81, 95 | syl5sseq 3903 |
. . . . . 6
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ {∪
(𝐽 fLim (𝑋filGen𝐹))}) |
97 | | sssn 4627 |
. . . . . 6
⊢ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ {∪
(𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
98 | 96, 97 | sylib 210 |
. . . . 5
⊢ (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
99 | 98 | ord 850 |
. . . 4
⊢ (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
100 | 80, 99 | mpd 15 |
. . 3
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
101 | 4, 100 | syl5eleqr 2867 |
. 2
⊢ (𝜑 → ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
102 | 1, 101 | syl5eqel 2864 |
1
⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |