Step | Hyp | Ref
| Expression |
1 | | minvec.p |
. 2
⊢ 𝑃 = ∪
(𝐽 fLim (𝑋filGen𝐹)) |
2 | | ovex 7288 |
. . . . 5
⊢ (𝐽 fLim (𝑋filGen𝐹)) ∈ V |
3 | 2 | uniex 7572 |
. . . 4
⊢ ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ V |
4 | 3 | snid 4594 |
. . 3
⊢ ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ {∪ (𝐽
fLim (𝑋filGen𝐹))} |
5 | | minvec.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
6 | | cphngp 24242 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
7 | | ngpxms 23663 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈
∞MetSp) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |
9 | | minvec.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑈) |
10 | | minvec.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝑈) |
11 | | minvec.d |
. . . . . . . . . . . 12
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
12 | 9, 10, 11 | xmstopn 23512 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐽 = (MetOpen‘𝐷)) |
13 | 8, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) |
14 | 13 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ↾t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌)) |
15 | 10, 11 | xmsxmet 23517 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐷 ∈
(∞Met‘𝑋)) |
16 | 8, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
17 | | minvec.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
19 | 10, 18 | lssss 20113 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
20 | 17, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
21 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
22 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
23 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
24 | 21, 22, 23 | metrest 23586 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
25 | 16, 20, 24 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
26 | 14, 25 | eqtr2d 2779 |
. . . . . . . 8
⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽 ↾t 𝑌)) |
27 | | minvec.m |
. . . . . . . . . . . 12
⊢ − =
(-g‘𝑈) |
28 | | minvec.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (norm‘𝑈) |
29 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
30 | | minvec.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
31 | | minvec.r |
. . . . . . . . . . . 12
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
32 | | minvec.s |
. . . . . . . . . . . 12
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
33 | | minvec.f |
. . . . . . . . . . . 12
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
34 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3b 24497 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |
35 | | fgcl 22937 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌)) |
37 | 10 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 𝑋 ∈ V |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ V) |
39 | | trfg 22950 |
. . . . . . . . . 10
⊢ (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹)) |
40 | 36, 20, 38, 39 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹)) |
41 | | fgabs 22938 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌 ⊆ 𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) |
42 | 34, 20, 41 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) |
43 | 42 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌)) |
44 | 40, 43 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌)) |
45 | 26, 44 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌))) |
46 | | xmstps 23514 |
. . . . . . . . . 10
⊢ (𝑈 ∈ ∞MetSp →
𝑈 ∈
TopSp) |
47 | 8, 46 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ TopSp) |
48 | 10, 9 | istps 21991 |
. . . . . . . . 9
⊢ (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
49 | 47, 48 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
50 | | fbsspw 22891 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌) |
51 | 34, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑌) |
52 | 20 | sspwd 4545 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
53 | 51, 52 | sstrd 3927 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑋) |
54 | | fbasweak 22924 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋)) |
55 | 34, 53, 38, 54 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑋)) |
56 | | fgcl 22937 |
. . . . . . . . 9
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
57 | 55, 56 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
58 | | filfbas 22907 |
. . . . . . . . . . . . 13
⊢ ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌)) |
59 | 34, 35, 58 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌)) |
60 | | fbsspw 22891 |
. . . . . . . . . . . . . 14
⊢ ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌) |
62 | 61, 52 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋) |
63 | | fbasweak 22924 |
. . . . . . . . . . . 12
⊢ (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋)) |
64 | 59, 62, 38, 63 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋)) |
65 | | ssfg 22931 |
. . . . . . . . . . 11
⊢ ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹))) |
66 | 64, 65 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹))) |
67 | 66, 42 | sseqtrd 3957 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹)) |
68 | | filtop 22914 |
. . . . . . . . . 10
⊢ ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹)) |
69 | 36, 68 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (𝑌filGen𝐹)) |
70 | 67, 69 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑋filGen𝐹)) |
71 | | flimrest 23042 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
72 | 49, 57, 70, 71 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
73 | 45, 72 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
74 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11 | minveclem3a 24496 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
75 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3 24498 |
. . . . . . 7
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |
76 | 23 | cmetcvg 24354 |
. . . . . . 7
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅) |
77 | 74, 75, 76 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅) |
78 | 73, 77 | eqnetrrd 3011 |
. . . . 5
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) |
79 | 78 | neneqd 2947 |
. . . 4
⊢ (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅) |
80 | | inss1 4159 |
. . . . . . 7
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) |
81 | 22 | methaus 23582 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus) |
82 | 15, 81 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ∞MetSp →
(MetOpen‘𝐷) ∈
Haus) |
83 | 12, 82 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐽 ∈
Haus) |
84 | | hausflimi 23039 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
85 | 8, 83, 84 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
86 | | ssn0 4331 |
. . . . . . . . . . . 12
⊢ ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅) |
87 | 80, 78, 86 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅) |
88 | | n0moeu 4287 |
. . . . . . . . . . 11
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))) |
89 | 87, 88 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))) |
90 | 85, 89 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
91 | | euen1b 8771 |
. . . . . . . . 9
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔
∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
92 | 90, 91 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o) |
93 | | en1b 8767 |
. . . . . . . 8
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
94 | 92, 93 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
95 | 80, 94 | sseqtrid 3969 |
. . . . . 6
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ {∪
(𝐽 fLim (𝑋filGen𝐹))}) |
96 | | sssn 4756 |
. . . . . 6
⊢ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ {∪
(𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
97 | 95, 96 | sylib 217 |
. . . . 5
⊢ (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
98 | 97 | ord 860 |
. . . 4
⊢ (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
99 | 79, 98 | mpd 15 |
. . 3
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
100 | 4, 99 | eleqtrrid 2846 |
. 2
⊢ (𝜑 → ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
101 | 1, 100 | eqeltrid 2843 |
1
⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |