MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Structured version   Visualization version   GIF version

Theorem minveclem4a 25337
Description: Lemma for minvec 25343. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4a (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
2 ovex 7423 . . . . 5 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
32uniex 7720 . . . 4 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
43snid 4629 . . 3 (𝐽 fLim (𝑋filGen𝐹)) ∈ { (𝐽 fLim (𝑋filGen𝐹))}
5 minvec.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂPreHil)
6 cphngp 25080 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
7 ngpxms 24496 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ ∞MetSp)
9 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
10 minvec.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑈)
11 minvec.d . . . . . . . . . . . 12 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
129, 10, 11xmstopn 24346 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐽 = (MetOpen‘𝐷))
1413oveq1d 7405 . . . . . . . . 9 (𝜑 → (𝐽t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌))
1510, 11xmsxmet 24351 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
168, 15syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
17 minvec.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LSubSp‘𝑈))
18 eqid 2730 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1910, 18lssss 20849 . . . . . . . . . . 11 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌𝑋)
21 eqid 2730 . . . . . . . . . . 11 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
22 eqid 2730 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
23 eqid 2730 . . . . . . . . . . 11 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2421, 22, 23metrest 24419 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2516, 20, 24syl2anc 584 . . . . . . . . 9 (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2614, 25eqtr2d 2766 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
27 minvec.m . . . . . . . . . . . 12 = (-g𝑈)
28 minvec.n . . . . . . . . . . . 12 𝑁 = (norm‘𝑈)
29 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
30 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
31 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
32 minvec.s . . . . . . . . . . . 12 𝑆 = inf(𝑅, ℝ, < )
33 minvec.f . . . . . . . . . . . 12 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 25335 . . . . . . . . . . 11 (𝜑𝐹 ∈ (fBas‘𝑌))
35 fgcl 23772 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3710fvexi 6875 . . . . . . . . . . 11 𝑋 ∈ V
3837a1i 11 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 trfg 23785 . . . . . . . . . 10 (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
4036, 20, 38, 39syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
41 fgabs 23773 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4234, 20, 41syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4342oveq1d 7405 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌))
4440, 43eqtr3d 2767 . . . . . . . 8 (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌))
4526, 44oveq12d 7408 . . . . . . 7 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)))
46 xmstps 24348 . . . . . . . . . 10 (𝑈 ∈ ∞MetSp → 𝑈 ∈ TopSp)
478, 46syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ TopSp)
4810, 9istps 22828 . . . . . . . . 9 (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
4947, 48sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
50 fbsspw 23726 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5134, 50syl 17 . . . . . . . . . . 11 (𝜑𝐹 ⊆ 𝒫 𝑌)
5220sspwd 4579 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5351, 52sstrd 3960 . . . . . . . . . 10 (𝜑𝐹 ⊆ 𝒫 𝑋)
54 fbasweak 23759 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5534, 53, 38, 54syl3anc 1373 . . . . . . . . 9 (𝜑𝐹 ∈ (fBas‘𝑋))
56 fgcl 23772 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
5755, 56syl 17 . . . . . . . 8 (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
58 filfbas 23742 . . . . . . . . . . . . 13 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5934, 35, 583syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
60 fbsspw 23726 . . . . . . . . . . . . . 14 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6159, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6261, 52sstrd 3960 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
63 fbasweak 23759 . . . . . . . . . . . 12 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
6459, 62, 38, 63syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
65 ssfg 23766 . . . . . . . . . . 11 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6766, 42sseqtrd 3986 . . . . . . . . 9 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹))
68 filtop 23749 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹))
6936, 68syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑌filGen𝐹))
7067, 69sseldd 3950 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋filGen𝐹))
71 flimrest 23877 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7249, 57, 70, 71syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7345, 72eqtrd 2765 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 25334 . . . . . . 7 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
7510, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 25336 . . . . . . 7 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
7623cmetcvg 25192 . . . . . . 7 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7774, 75, 76syl2anc 584 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7873, 77eqnetrrd 2994 . . . . 5 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅)
7978neneqd 2931 . . . 4 (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅)
80 inss1 4203 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹))
8122methaus 24415 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus)
8215, 81syl 17 . . . . . . . . . . . 12 (𝑈 ∈ ∞MetSp → (MetOpen‘𝐷) ∈ Haus)
8312, 82eqeltrd 2829 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 ∈ Haus)
84 hausflimi 23874 . . . . . . . . . . 11 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
858, 83, 843syl 18 . . . . . . . . . 10 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
86 ssn0 4370 . . . . . . . . . . . 12 ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
8780, 78, 86sylancr 587 . . . . . . . . . . 11 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
88 n0moeu 4325 . . . . . . . . . . 11 ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
8987, 88syl 17 . . . . . . . . . 10 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9085, 89mpbid 232 . . . . . . . . 9 (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
91 euen1b 9002 . . . . . . . . 9 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
9290, 91sylibr 234 . . . . . . . 8 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o)
93 en1b 8999 . . . . . . . 8 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9492, 93sylib 218 . . . . . . 7 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9580, 94sseqtrid 3992 . . . . . 6 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))})
96 sssn 4793 . . . . . 6 (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9795, 96sylib 218 . . . . 5 (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9897ord 864 . . . 4 (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9979, 98mpd 15 . . 3 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))})
1004, 99eleqtrrid 2836 . 2 (𝜑 (𝐽 fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1011, 100eqeltrid 2833 1 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  ∃*wmo 2532  ∃!weu 2562  wne 2926  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  1oc1o 8430  cen 8918  infcinf 9399  cr 11074   + caddc 11078   < clt 11215  cle 11216  2c2 12248  +crp 12958  cexp 14033  Basecbs 17186  s cress 17207  distcds 17236  t crest 17390  TopOpenctopn 17391  -gcsg 18874  LSubSpclss 20844  ∞Metcxmet 21256  fBascfbas 21259  filGencfg 21260  MetOpencmopn 21261  TopOnctopon 22804  TopSpctps 22826  Hauscha 23202  Filcfil 23739   fLim cflim 23828  ∞MetSpcxms 24212  normcnm 24471  NrmGrpcngp 24472  ℂPreHilccph 25073  CauFilccfil 25159  CMetccmet 25161  CMetSpccms 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrg 20486  df-drng 20647  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-phl 21542  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-nei 22992  df-haus 23209  df-fil 23740  df-flim 23833  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nlm 24481  df-clm 24970  df-cph 25075  df-cfil 25162  df-cmet 25164  df-cms 25242
This theorem is referenced by:  minveclem4b  25338  minveclem4  25339
  Copyright terms: Public domain W3C validator