MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Structured version   Visualization version   GIF version

Theorem minveclem4a 24299
Description: Lemma for minvec 24305. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4a (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
2 ovex 7235 . . . . 5 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
32uniex 7518 . . . 4 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
43snid 4567 . . 3 (𝐽 fLim (𝑋filGen𝐹)) ∈ { (𝐽 fLim (𝑋filGen𝐹))}
5 minvec.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂPreHil)
6 cphngp 24042 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
7 ngpxms 23471 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ ∞MetSp)
9 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
10 minvec.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑈)
11 minvec.d . . . . . . . . . . . 12 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
129, 10, 11xmstopn 23321 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐽 = (MetOpen‘𝐷))
1413oveq1d 7217 . . . . . . . . 9 (𝜑 → (𝐽t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌))
1510, 11xmsxmet 23326 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
168, 15syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
17 minvec.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LSubSp‘𝑈))
18 eqid 2734 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1910, 18lssss 19945 . . . . . . . . . . 11 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌𝑋)
21 eqid 2734 . . . . . . . . . . 11 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
22 eqid 2734 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
23 eqid 2734 . . . . . . . . . . 11 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2421, 22, 23metrest 23394 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2516, 20, 24syl2anc 587 . . . . . . . . 9 (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2614, 25eqtr2d 2775 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
27 minvec.m . . . . . . . . . . . 12 = (-g𝑈)
28 minvec.n . . . . . . . . . . . 12 𝑁 = (norm‘𝑈)
29 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
30 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
31 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
32 minvec.s . . . . . . . . . . . 12 𝑆 = inf(𝑅, ℝ, < )
33 minvec.f . . . . . . . . . . . 12 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 24297 . . . . . . . . . . 11 (𝜑𝐹 ∈ (fBas‘𝑌))
35 fgcl 22747 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3710fvexi 6720 . . . . . . . . . . 11 𝑋 ∈ V
3837a1i 11 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 trfg 22760 . . . . . . . . . 10 (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
4036, 20, 38, 39syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
41 fgabs 22748 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4234, 20, 41syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4342oveq1d 7217 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌))
4440, 43eqtr3d 2776 . . . . . . . 8 (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌))
4526, 44oveq12d 7220 . . . . . . 7 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)))
46 xmstps 23323 . . . . . . . . . 10 (𝑈 ∈ ∞MetSp → 𝑈 ∈ TopSp)
478, 46syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ TopSp)
4810, 9istps 21803 . . . . . . . . 9 (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
4947, 48sylib 221 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
50 fbsspw 22701 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5134, 50syl 17 . . . . . . . . . . 11 (𝜑𝐹 ⊆ 𝒫 𝑌)
5220sspwd 4518 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5351, 52sstrd 3901 . . . . . . . . . 10 (𝜑𝐹 ⊆ 𝒫 𝑋)
54 fbasweak 22734 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5534, 53, 38, 54syl3anc 1373 . . . . . . . . 9 (𝜑𝐹 ∈ (fBas‘𝑋))
56 fgcl 22747 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
5755, 56syl 17 . . . . . . . 8 (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
58 filfbas 22717 . . . . . . . . . . . . 13 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5934, 35, 583syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
60 fbsspw 22701 . . . . . . . . . . . . . 14 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6159, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6261, 52sstrd 3901 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
63 fbasweak 22734 . . . . . . . . . . . 12 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
6459, 62, 38, 63syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
65 ssfg 22741 . . . . . . . . . . 11 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6766, 42sseqtrd 3931 . . . . . . . . 9 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹))
68 filtop 22724 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹))
6936, 68syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑌filGen𝐹))
7067, 69sseldd 3892 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋filGen𝐹))
71 flimrest 22852 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7249, 57, 70, 71syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7345, 72eqtrd 2774 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 24296 . . . . . . 7 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
7510, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 24298 . . . . . . 7 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
7623cmetcvg 24154 . . . . . . 7 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7774, 75, 76syl2anc 587 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7873, 77eqnetrrd 3003 . . . . 5 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅)
7978neneqd 2940 . . . 4 (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅)
80 inss1 4133 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹))
8122methaus 23390 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus)
8215, 81syl 17 . . . . . . . . . . . 12 (𝑈 ∈ ∞MetSp → (MetOpen‘𝐷) ∈ Haus)
8312, 82eqeltrd 2834 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 ∈ Haus)
84 hausflimi 22849 . . . . . . . . . . 11 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
858, 83, 843syl 18 . . . . . . . . . 10 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
86 ssn0 4305 . . . . . . . . . . . 12 ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
8780, 78, 86sylancr 590 . . . . . . . . . . 11 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
88 n0moeu 4261 . . . . . . . . . . 11 ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
8987, 88syl 17 . . . . . . . . . 10 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9085, 89mpbid 235 . . . . . . . . 9 (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
91 euen1b 8693 . . . . . . . . 9 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
9290, 91sylibr 237 . . . . . . . 8 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o)
93 en1b 8689 . . . . . . . 8 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9492, 93sylib 221 . . . . . . 7 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9580, 94sseqtrid 3943 . . . . . 6 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))})
96 sssn 4729 . . . . . 6 (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9795, 96sylib 221 . . . . 5 (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9897ord 864 . . . 4 (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9979, 98mpd 15 . . 3 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))})
1004, 99eleqtrrid 2841 . 2 (𝜑 (𝐽 fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1011, 100eqeltrid 2838 1 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wo 847   = wceq 1543  wcel 2110  ∃*wmo 2535  ∃!weu 2565  wne 2935  {crab 3058  Vcvv 3401  cin 3856  wss 3857  c0 4227  𝒫 cpw 4503  {csn 4531   cuni 4809   class class class wbr 5043  cmpt 5124   × cxp 5538  ran crn 5541  cres 5542  cfv 6369  (class class class)co 7202  1oc1o 8184  cen 8612  infcinf 9046  cr 10711   + caddc 10715   < clt 10850  cle 10851  2c2 11868  +crp 12569  cexp 13618  Basecbs 16684  s cress 16685  distcds 16776  t crest 16897  TopOpenctopn 16898  -gcsg 18339  LSubSpclss 19940  ∞Metcxmet 20320  fBascfbas 20323  filGencfg 20324  MetOpencmopn 20325  TopOnctopon 21779  TopSpctps 21801  Hauscha 22177  Filcfil 22714   fLim cflim 22803  ∞MetSpcxms 23187  normcnm 23446  NrmGrpcngp 23447  ℂPreHilccph 24035  CauFilccfil 24121  CMetccmet 24123  CMetSpccms 24201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ico 12924  df-icc 12925  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-rest 16899  df-0g 16918  df-topgen 16920  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-grp 18340  df-minusg 18341  df-sbg 18342  df-mulg 18461  df-subg 18512  df-ghm 18592  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-dvr 19673  df-rnghom 19707  df-drng 19741  df-subrg 19770  df-staf 19853  df-srng 19854  df-lmod 19873  df-lss 19941  df-lmhm 20031  df-lvec 20112  df-sra 20181  df-rgmod 20182  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-phl 20560  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-ntr 21889  df-nei 21967  df-haus 22184  df-fil 22715  df-flim 22808  df-xms 23190  df-ms 23191  df-nm 23452  df-ngp 23453  df-nlm 23456  df-clm 23932  df-cph 24037  df-cfil 24124  df-cmet 24126  df-cms 24204
This theorem is referenced by:  minveclem4b  24300  minveclem4  24301
  Copyright terms: Public domain W3C validator