MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Structured version   Visualization version   GIF version

Theorem minveclem4a 25483
Description: Lemma for minvec 25489. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4a (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
2 ovex 7481 . . . . 5 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
32uniex 7776 . . . 4 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
43snid 4684 . . 3 (𝐽 fLim (𝑋filGen𝐹)) ∈ { (𝐽 fLim (𝑋filGen𝐹))}
5 minvec.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂPreHil)
6 cphngp 25226 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
7 ngpxms 24635 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ ∞MetSp)
9 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
10 minvec.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑈)
11 minvec.d . . . . . . . . . . . 12 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
129, 10, 11xmstopn 24482 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐽 = (MetOpen‘𝐷))
1413oveq1d 7463 . . . . . . . . 9 (𝜑 → (𝐽t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌))
1510, 11xmsxmet 24487 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
168, 15syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
17 minvec.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LSubSp‘𝑈))
18 eqid 2740 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1910, 18lssss 20957 . . . . . . . . . . 11 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌𝑋)
21 eqid 2740 . . . . . . . . . . 11 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
22 eqid 2740 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
23 eqid 2740 . . . . . . . . . . 11 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2421, 22, 23metrest 24558 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2516, 20, 24syl2anc 583 . . . . . . . . 9 (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2614, 25eqtr2d 2781 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
27 minvec.m . . . . . . . . . . . 12 = (-g𝑈)
28 minvec.n . . . . . . . . . . . 12 𝑁 = (norm‘𝑈)
29 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
30 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
31 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
32 minvec.s . . . . . . . . . . . 12 𝑆 = inf(𝑅, ℝ, < )
33 minvec.f . . . . . . . . . . . 12 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 25481 . . . . . . . . . . 11 (𝜑𝐹 ∈ (fBas‘𝑌))
35 fgcl 23907 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3710fvexi 6934 . . . . . . . . . . 11 𝑋 ∈ V
3837a1i 11 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 trfg 23920 . . . . . . . . . 10 (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
4036, 20, 38, 39syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
41 fgabs 23908 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4234, 20, 41syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4342oveq1d 7463 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌))
4440, 43eqtr3d 2782 . . . . . . . 8 (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌))
4526, 44oveq12d 7466 . . . . . . 7 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)))
46 xmstps 24484 . . . . . . . . . 10 (𝑈 ∈ ∞MetSp → 𝑈 ∈ TopSp)
478, 46syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ TopSp)
4810, 9istps 22961 . . . . . . . . 9 (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
4947, 48sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
50 fbsspw 23861 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5134, 50syl 17 . . . . . . . . . . 11 (𝜑𝐹 ⊆ 𝒫 𝑌)
5220sspwd 4635 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5351, 52sstrd 4019 . . . . . . . . . 10 (𝜑𝐹 ⊆ 𝒫 𝑋)
54 fbasweak 23894 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5534, 53, 38, 54syl3anc 1371 . . . . . . . . 9 (𝜑𝐹 ∈ (fBas‘𝑋))
56 fgcl 23907 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
5755, 56syl 17 . . . . . . . 8 (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
58 filfbas 23877 . . . . . . . . . . . . 13 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
5934, 35, 583syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
60 fbsspw 23861 . . . . . . . . . . . . . 14 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6159, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6261, 52sstrd 4019 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
63 fbasweak 23894 . . . . . . . . . . . 12 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
6459, 62, 38, 63syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
65 ssfg 23901 . . . . . . . . . . 11 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6766, 42sseqtrd 4049 . . . . . . . . 9 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹))
68 filtop 23884 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹))
6936, 68syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑌filGen𝐹))
7067, 69sseldd 4009 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋filGen𝐹))
71 flimrest 24012 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7249, 57, 70, 71syl3anc 1371 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7345, 72eqtrd 2780 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 25480 . . . . . . 7 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
7510, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 25482 . . . . . . 7 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
7623cmetcvg 25338 . . . . . . 7 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7774, 75, 76syl2anc 583 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7873, 77eqnetrrd 3015 . . . . 5 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅)
7978neneqd 2951 . . . 4 (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅)
80 inss1 4258 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹))
8122methaus 24554 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus)
8215, 81syl 17 . . . . . . . . . . . 12 (𝑈 ∈ ∞MetSp → (MetOpen‘𝐷) ∈ Haus)
8312, 82eqeltrd 2844 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 ∈ Haus)
84 hausflimi 24009 . . . . . . . . . . 11 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
858, 83, 843syl 18 . . . . . . . . . 10 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
86 ssn0 4427 . . . . . . . . . . . 12 ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
8780, 78, 86sylancr 586 . . . . . . . . . . 11 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
88 n0moeu 4382 . . . . . . . . . . 11 ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
8987, 88syl 17 . . . . . . . . . 10 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9085, 89mpbid 232 . . . . . . . . 9 (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
91 euen1b 9092 . . . . . . . . 9 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
9290, 91sylibr 234 . . . . . . . 8 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o)
93 en1b 9088 . . . . . . . 8 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9492, 93sylib 218 . . . . . . 7 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9580, 94sseqtrid 4061 . . . . . 6 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))})
96 sssn 4851 . . . . . 6 (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9795, 96sylib 218 . . . . 5 (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9897ord 863 . . . 4 (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9979, 98mpd 15 . . 3 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))})
1004, 99eleqtrrid 2851 . 2 (𝜑 (𝐽 fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1011, 100eqeltrid 2848 1 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846   = wceq 1537  wcel 2108  ∃*wmo 2541  ∃!weu 2571  wne 2946  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  cres 5702  cfv 6573  (class class class)co 7448  1oc1o 8515  cen 9000  infcinf 9510  cr 11183   + caddc 11187   < clt 11324  cle 11325  2c2 12348  +crp 13057  cexp 14112  Basecbs 17258  s cress 17287  distcds 17320  t crest 17480  TopOpenctopn 17481  -gcsg 18975  LSubSpclss 20952  ∞Metcxmet 21372  fBascfbas 21375  filGencfg 21376  MetOpencmopn 21377  TopOnctopon 22937  TopSpctps 22959  Hauscha 23337  Filcfil 23874   fLim cflim 23963  ∞MetSpcxms 24348  normcnm 24610  NrmGrpcngp 24611  ℂPreHilccph 25219  CauFilccfil 25305  CMetccmet 25307  CMetSpccms 25385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrg 20597  df-drng 20753  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-lmhm 21044  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-phl 21667  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-nei 23127  df-haus 23344  df-fil 23875  df-flim 23968  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nlm 24620  df-clm 25115  df-cph 25221  df-cfil 25308  df-cmet 25310  df-cms 25388
This theorem is referenced by:  minveclem4b  25484  minveclem4  25485
  Copyright terms: Public domain W3C validator