MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Structured version   Visualization version   GIF version

Theorem minveclem4a 23730
Description: Lemma for minvec 23736. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4a (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
2 ovex 7002 . . . . 5 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
32uniex 7277 . . . 4 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
43snid 4467 . . 3 (𝐽 fLim (𝑋filGen𝐹)) ∈ { (𝐽 fLim (𝑋filGen𝐹))}
5 minvec.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂPreHil)
6 cphngp 23474 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
7 ngpxms 22907 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ ∞MetSp)
9 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
10 minvec.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑈)
11 minvec.d . . . . . . . . . . . 12 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
129, 10, 11xmstopn 22758 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐽 = (MetOpen‘𝐷))
1413oveq1d 6985 . . . . . . . . 9 (𝜑 → (𝐽t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌))
1510, 11xmsxmet 22763 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
168, 15syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
17 minvec.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LSubSp‘𝑈))
18 eqid 2772 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1910, 18lssss 19424 . . . . . . . . . . 11 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌𝑋)
21 eqid 2772 . . . . . . . . . . 11 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
22 eqid 2772 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
23 eqid 2772 . . . . . . . . . . 11 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2421, 22, 23metrest 22831 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2516, 20, 24syl2anc 576 . . . . . . . . 9 (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2614, 25eqtr2d 2809 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
27 minvec.m . . . . . . . . . . . 12 = (-g𝑈)
28 minvec.n . . . . . . . . . . . 12 𝑁 = (norm‘𝑈)
29 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
30 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
31 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
32 minvec.s . . . . . . . . . . . 12 𝑆 = inf(𝑅, ℝ, < )
33 minvec.f . . . . . . . . . . . 12 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 23728 . . . . . . . . . . 11 (𝜑𝐹 ∈ (fBas‘𝑌))
35 fgcl 22184 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3710fvexi 6507 . . . . . . . . . . 11 𝑋 ∈ V
3837a1i 11 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 trfg 22197 . . . . . . . . . 10 (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
4036, 20, 38, 39syl3anc 1351 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
41 fgabs 22185 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4234, 20, 41syl2anc 576 . . . . . . . . . 10 (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4342oveq1d 6985 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌))
4440, 43eqtr3d 2810 . . . . . . . 8 (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌))
4526, 44oveq12d 6988 . . . . . . 7 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)))
46 xmstps 22760 . . . . . . . . . 10 (𝑈 ∈ ∞MetSp → 𝑈 ∈ TopSp)
478, 46syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ TopSp)
4810, 9istps 21240 . . . . . . . . 9 (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
4947, 48sylib 210 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
50 fbsspw 22138 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5134, 50syl 17 . . . . . . . . . . 11 (𝜑𝐹 ⊆ 𝒫 𝑌)
52 sspwb 5192 . . . . . . . . . . . 12 (𝑌𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋)
5320, 52sylib 210 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5451, 53sstrd 3862 . . . . . . . . . 10 (𝜑𝐹 ⊆ 𝒫 𝑋)
55 fbasweak 22171 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5634, 54, 38, 55syl3anc 1351 . . . . . . . . 9 (𝜑𝐹 ∈ (fBas‘𝑋))
57 fgcl 22184 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
5856, 57syl 17 . . . . . . . 8 (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
59 filfbas 22154 . . . . . . . . . . . . 13 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
6034, 35, 593syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
61 fbsspw 22138 . . . . . . . . . . . . . 14 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6260, 61syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6362, 53sstrd 3862 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
64 fbasweak 22171 . . . . . . . . . . . 12 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
6560, 63, 38, 64syl3anc 1351 . . . . . . . . . . 11 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
66 ssfg 22178 . . . . . . . . . . 11 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6765, 66syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6867, 42sseqtrd 3891 . . . . . . . . 9 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹))
69 filtop 22161 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹))
7036, 69syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑌filGen𝐹))
7168, 70sseldd 3853 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋filGen𝐹))
72 flimrest 22289 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7349, 58, 71, 72syl3anc 1351 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7445, 73eqtrd 2808 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7510, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 23727 . . . . . . 7 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
7610, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 23729 . . . . . . 7 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
7723cmetcvg 23585 . . . . . . 7 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7875, 76, 77syl2anc 576 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7974, 78eqnetrrd 3029 . . . . 5 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅)
8079neneqd 2966 . . . 4 (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅)
81 inss1 4086 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹))
8222methaus 22827 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus)
8315, 82syl 17 . . . . . . . . . . . 12 (𝑈 ∈ ∞MetSp → (MetOpen‘𝐷) ∈ Haus)
8412, 83eqeltrd 2860 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 ∈ Haus)
85 hausflimi 22286 . . . . . . . . . . 11 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
868, 84, 853syl 18 . . . . . . . . . 10 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
87 ssn0 4234 . . . . . . . . . . . 12 ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
8881, 79, 87sylancr 578 . . . . . . . . . . 11 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
89 n0moeu 4196 . . . . . . . . . . 11 ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9088, 89syl 17 . . . . . . . . . 10 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9186, 90mpbid 224 . . . . . . . . 9 (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
92 euen1b 8371 . . . . . . . . 9 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
9391, 92sylibr 226 . . . . . . . 8 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o)
94 en1b 8368 . . . . . . . 8 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9593, 94sylib 210 . . . . . . 7 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9681, 95syl5sseq 3903 . . . . . 6 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))})
97 sssn 4627 . . . . . 6 (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9896, 97sylib 210 . . . . 5 (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9998ord 850 . . . 4 (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
10080, 99mpd 15 . . 3 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))})
1014, 100syl5eleqr 2867 . 2 (𝜑 (𝐽 fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1021, 101syl5eqel 2864 1 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wo 833   = wceq 1507  wcel 2050  ∃*wmo 2545  ∃!weu 2583  wne 2961  {crab 3086  Vcvv 3409  cin 3822  wss 3823  c0 4172  𝒫 cpw 4416  {csn 4435   cuni 4706   class class class wbr 4923  cmpt 5002   × cxp 5399  ran crn 5402  cres 5403  cfv 6182  (class class class)co 6970  1oc1o 7892  cen 8297  infcinf 8694  cr 10328   + caddc 10332   < clt 10468  cle 10469  2c2 11489  +crp 12198  cexp 13238  Basecbs 16333  s cress 16334  distcds 16424  t crest 16544  TopOpenctopn 16545  -gcsg 17887  LSubSpclss 19419  ∞Metcxmet 20226  fBascfbas 20229  filGencfg 20230  MetOpencmopn 20231  TopOnctopon 21216  TopSpctps 21238  Hauscha 21614  Filcfil 22151   fLim cflim 22240  ∞MetSpcxms 22624  normcnm 22883  NrmGrpcngp 22884  ℂPreHilccph 23467  CauFilccfil 23552  CMetccmet 23554  CMetSpccms 23632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407  ax-addf 10408  ax-mulf 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-tpos 7689  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-fi 8664  df-sup 8695  df-inf 8696  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-q 12157  df-rp 12199  df-xneg 12318  df-xadd 12319  df-xmul 12320  df-ico 12554  df-icc 12555  df-fz 12703  df-seq 13179  df-exp 13239  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-starv 16430  df-sca 16431  df-vsca 16432  df-ip 16433  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-rest 16546  df-0g 16565  df-topgen 16567  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-mhm 17797  df-grp 17888  df-minusg 17889  df-sbg 17890  df-mulg 18006  df-subg 18054  df-ghm 18121  df-cmn 18662  df-abl 18663  df-mgp 18957  df-ur 18969  df-ring 19016  df-cring 19017  df-oppr 19090  df-dvdsr 19108  df-unit 19109  df-invr 19139  df-dvr 19150  df-rnghom 19184  df-drng 19221  df-subrg 19250  df-staf 19332  df-srng 19333  df-lmod 19352  df-lss 19420  df-lmhm 19510  df-lvec 19591  df-sra 19660  df-rgmod 19661  df-psmet 20233  df-xmet 20234  df-met 20235  df-bl 20236  df-mopn 20237  df-fbas 20238  df-fg 20239  df-cnfld 20242  df-phl 20466  df-top 21200  df-topon 21217  df-topsp 21239  df-bases 21252  df-ntr 21326  df-nei 21404  df-haus 21621  df-fil 22152  df-flim 22245  df-xms 22627  df-ms 22628  df-nm 22889  df-ngp 22890  df-nlm 22893  df-clm 23364  df-cph 23469  df-cfil 23555  df-cmet 23557  df-cms 23635
This theorem is referenced by:  minveclem4b  23731  minveclem4  23732
  Copyright terms: Public domain W3C validator