| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4288 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 3060 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∃wrex 3056 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: reu0 4311 rmo0 4312 0iun 5011 0qs 8687 sup0riota 9350 cfeq0 10144 cfsuc 10145 hashge2el2difr 14385 cshws0 17010 addsrid 27905 muls01 28049 mulsrid 28050 elons2 28193 onaddscl 28208 onmulscl 28209 n0scut 28260 1p1e2s 28337 0ringirng 33697 dya2iocuni 34291 eulerpartlemgh 34386 pmapglb2xN 39810 elpadd0 39847 tfsconcatb0 43376 sprsymrelfvlem 47520 ipolub00 49023 |
| Copyright terms: Public domain | W3C validator |