| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 3061 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2113 ∃wrex 3057 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: reu0 4310 rmo0 4311 0iun 5013 0qs 8693 sup0riota 9357 cfeq0 10154 cfsuc 10155 hashge2el2difr 14390 cshws0 17015 addsrid 27908 muls01 28052 mulsrid 28053 elons2 28196 onaddscl 28211 onmulscl 28212 n0scut 28263 1p1e2s 28340 0ringirng 33723 dya2iocuni 34317 eulerpartlemgh 34412 pmapglb2xN 39891 elpadd0 39928 tfsconcatb0 43461 sprsymrelfvlem 47614 ipolub00 49117 |
| Copyright terms: Public domain | W3C validator |