![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version |
Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
3 | 2 | nrex 3080 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∃wrex 3076 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-dif 3979 df-nul 4353 |
This theorem is referenced by: reu0 4384 rmo0 4385 0iun 5086 0qs 8825 sup0riota 9534 cfeq0 10325 cfsuc 10326 hashge2el2difr 14530 cshws0 17149 addsrid 28015 muls01 28156 mulsrid 28157 elons2 28299 onaddscl 28304 onmulscl 28305 n0scut 28356 1p1e2s 28418 0ringirng 33689 dya2iocuni 34248 eulerpartlemgh 34343 pmapglb2xN 39729 elpadd0 39766 tfsconcatb0 43306 sprsymrelfvlem 47364 ipolub00 48665 |
Copyright terms: Public domain | W3C validator |