| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 3064 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ∃wrex 3060 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: reu0 4336 rmo0 4337 0iun 5039 0qs 8781 sup0riota 9478 cfeq0 10270 cfsuc 10271 hashge2el2difr 14499 cshws0 17121 addsrid 27923 muls01 28067 mulsrid 28068 elons2 28211 onaddscl 28226 onmulscl 28227 n0scut 28278 1p1e2s 28354 0ringirng 33730 dya2iocuni 34315 eulerpartlemgh 34410 pmapglb2xN 39791 elpadd0 39828 tfsconcatb0 43368 sprsymrelfvlem 47504 ipolub00 48967 |
| Copyright terms: Public domain | W3C validator |