| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 3057 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∃wrex 3053 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: reu0 4324 rmo0 4325 0iun 5027 0qs 8736 sup0riota 9417 cfeq0 10209 cfsuc 10210 hashge2el2difr 14446 cshws0 17072 addsrid 27871 muls01 28015 mulsrid 28016 elons2 28159 onaddscl 28174 onmulscl 28175 n0scut 28226 1p1e2s 28302 0ringirng 33684 dya2iocuni 34274 eulerpartlemgh 34369 pmapglb2xN 39766 elpadd0 39803 tfsconcatb0 43333 sprsymrelfvlem 47491 ipolub00 48981 |
| Copyright terms: Public domain | W3C validator |