| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 3057 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∃wrex 3053 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: reu0 4314 rmo0 4315 0iun 5015 0qs 8697 sup0riota 9375 cfeq0 10169 cfsuc 10170 hashge2el2difr 14406 cshws0 17031 addsrid 27894 muls01 28038 mulsrid 28039 elons2 28182 onaddscl 28197 onmulscl 28198 n0scut 28249 1p1e2s 28326 0ringirng 33660 dya2iocuni 34250 eulerpartlemgh 34345 pmapglb2xN 39751 elpadd0 39788 tfsconcatb0 43317 sprsymrelfvlem 47475 ipolub00 48978 |
| Copyright terms: Public domain | W3C validator |