![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version |
Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4344 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
3 | 2 | nrex 3072 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∃wrex 3068 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-dif 3966 df-nul 4340 |
This theorem is referenced by: reu0 4367 rmo0 4368 0iun 5068 0qs 8806 sup0riota 9503 cfeq0 10294 cfsuc 10295 hashge2el2difr 14517 cshws0 17136 addsrid 28012 muls01 28153 mulsrid 28154 elons2 28296 onaddscl 28301 onmulscl 28302 n0scut 28353 1p1e2s 28415 0ringirng 33704 dya2iocuni 34265 eulerpartlemgh 34360 pmapglb2xN 39755 elpadd0 39792 tfsconcatb0 43334 sprsymrelfvlem 47415 ipolub00 48782 |
Copyright terms: Public domain | W3C validator |