Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version |
Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
3 | 2 | nrex 3196 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∃wrex 3064 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 |
This theorem is referenced by: reu0 4289 rmo0 4290 0iun 4988 sup0riota 9154 cfeq0 9943 cfsuc 9944 hashge2el2difr 14123 cshws0 16731 dya2iocuni 32150 eulerpartlemgh 32245 addsid1 34054 0qs 36427 pmapglb2xN 37713 elpadd0 37750 sprsymrelfvlem 44830 ipolub00 46167 |
Copyright terms: Public domain | W3C validator |