Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version |
Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4264 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
3 | 2 | nrex 3197 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∃wrex 3065 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-dif 3890 df-nul 4257 |
This theorem is referenced by: reu0 4292 rmo0 4293 0iun 4992 sup0riota 9224 cfeq0 10012 cfsuc 10013 hashge2el2difr 14195 cshws0 16803 dya2iocuni 32250 eulerpartlemgh 32345 addsid1 34127 0qs 36500 pmapglb2xN 37786 elpadd0 37823 sprsymrelfvlem 44942 ipolub00 46279 |
Copyright terms: Public domain | W3C validator |