| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 3058 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∃wrex 3054 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: reu0 4327 rmo0 4328 0iun 5030 0qs 8739 sup0riota 9424 cfeq0 10216 cfsuc 10217 hashge2el2difr 14453 cshws0 17079 addsrid 27878 muls01 28022 mulsrid 28023 elons2 28166 onaddscl 28181 onmulscl 28182 n0scut 28233 1p1e2s 28309 0ringirng 33691 dya2iocuni 34281 eulerpartlemgh 34376 pmapglb2xN 39773 elpadd0 39810 tfsconcatb0 43340 sprsymrelfvlem 47495 ipolub00 48985 |
| Copyright terms: Public domain | W3C validator |