Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-grothshort Structured version   Visualization version   GIF version

Theorem rr-grothshort 44295
Description: A shorter equivalent of ax-groth 10842 than rr-groth 44290 using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024.)
Assertion
Ref Expression
rr-grothshort 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)))
Distinct variable groups:   𝑥,𝑦   𝑤,𝑓,𝑦,𝑧

Proof of Theorem rr-grothshort
StepHypRef Expression
1 gruex 44289 . . . 4 𝑦 ∈ Univ 𝑥𝑦
21ax-gen 1795 . . 3 𝑥𝑦 ∈ Univ 𝑥𝑦
3 rr-grothshortbi 44294 . . 3 (∀𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀𝑥𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))))
42, 3mpbi 230 . 2 𝑥𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)))
54spi 2185 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wal 1538  wex 1779  wral 3052  wrex 3061  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4888  Univcgru 10809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-groth 10842
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-smo 8365  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-har 9576  df-tc 9756  df-r1 9783  df-rank 9784  df-card 9958  df-aleph 9959  df-cf 9960  df-acn 9961  df-ac 10135  df-wina 10703  df-ina 10704  df-tsk 10768  df-gru 10810  df-scott 44227  df-coll 44242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator