![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > undisjrab | Structured version Visualization version GIF version |
Description: Union of two disjoint restricted class abstractions; compare unrab 4269. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
Ref | Expression |
---|---|
undisjrab | ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4348 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓)) | |
2 | df-nan 1491 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | nanorxor 42677 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) | |
4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
5 | 4 | ralbii 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
6 | rabbi 3431 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓)) ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) | |
7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
8 | inrab 4270 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | |
9 | 8 | eqeq1i 2738 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅) |
10 | unrab 4269 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | |
11 | 10 | eqeq1i 2738 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)} ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
12 | 7, 9, 11 | 3bitr4i 303 | 1 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 846 ⊼ wnan 1490 ⊻ wxo 1510 = wceq 1542 ∀wral 3061 {crab 3406 ∪ cun 3912 ∩ cin 3913 ∅c0 4286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-nan 1491 df-xor 1511 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-nul 4287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |