Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undisjrab Structured version   Visualization version   GIF version

Theorem undisjrab 42158
Description: Union of two disjoint restricted class abstractions; compare unrab 4250. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Assertion
Ref Expression
undisjrab (({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ∅ ↔ ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)})

Proof of Theorem undisjrab
StepHypRef Expression
1 rabeq0 4329 . . 3 ({𝑥𝐴 ∣ (𝜑𝜓)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑𝜓))
2 df-nan 1489 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
3 nanorxor 42157 . . . . 5 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
42, 3bitr3i 276 . . . 4 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
54ralbii 3093 . . 3 (∀𝑥𝐴 ¬ (𝜑𝜓) ↔ ∀𝑥𝐴 ((𝜑𝜓) ↔ (𝜑𝜓)))
6 rabbi 3428 . . 3 (∀𝑥𝐴 ((𝜑𝜓) ↔ (𝜑𝜓)) ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
71, 5, 63bitri 296 . 2 ({𝑥𝐴 ∣ (𝜑𝜓)} = ∅ ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
8 inrab 4251 . . 3 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
98eqeq1i 2742 . 2 (({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ∅ ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = ∅)
10 unrab 4250 . . 3 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
1110eqeq1i 2742 . 2 (({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)} ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
127, 9, 113bitr4i 302 1 (({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ∅ ↔ ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wnan 1488  wxo 1508   = wceq 1540  wral 3062  {crab 3404  cun 3895  cin 3896  c0 4267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-nan 1489  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-nul 4268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator