Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > undisjrab | Structured version Visualization version GIF version |
Description: Union of two disjoint restricted class abstractions; compare unrab 4236. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
Ref | Expression |
---|---|
undisjrab | ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4315 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓)) | |
2 | df-nan 1484 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | nanorxor 41812 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) | |
4 | 2, 3 | bitr3i 276 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
5 | 4 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
6 | rabbi 3309 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓)) ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) | |
7 | 1, 5, 6 | 3bitri 296 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
8 | inrab 4237 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | |
9 | 8 | eqeq1i 2743 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅) |
10 | unrab 4236 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | |
11 | 10 | eqeq1i 2743 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)} ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
12 | 7, 9, 11 | 3bitr4i 302 | 1 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ⊼ wnan 1483 ⊻ wxo 1503 = wceq 1539 ∀wral 3063 {crab 3067 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-nan 1484 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |