Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undisjrab Structured version   Visualization version   GIF version

Theorem undisjrab 44275
Description: Union of two disjoint restricted class abstractions; compare unrab 4334. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Assertion
Ref Expression
undisjrab (({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ∅ ↔ ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)})

Proof of Theorem undisjrab
StepHypRef Expression
1 rabeq0 4411 . . 3 ({𝑥𝐴 ∣ (𝜑𝜓)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑𝜓))
2 df-nan 1489 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
3 nanorxor 44274 . . . . 5 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
42, 3bitr3i 277 . . . 4 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
54ralbii 3099 . . 3 (∀𝑥𝐴 ¬ (𝜑𝜓) ↔ ∀𝑥𝐴 ((𝜑𝜓) ↔ (𝜑𝜓)))
6 rabbi 3475 . . 3 (∀𝑥𝐴 ((𝜑𝜓) ↔ (𝜑𝜓)) ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
71, 5, 63bitri 297 . 2 ({𝑥𝐴 ∣ (𝜑𝜓)} = ∅ ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
8 inrab 4335 . . 3 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
98eqeq1i 2745 . 2 (({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ∅ ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = ∅)
10 unrab 4334 . . 3 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
1110eqeq1i 2745 . 2 (({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)} ↔ {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
127, 9, 113bitr4i 303 1 (({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ∅ ↔ ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  wnan 1488  wxo 1508   = wceq 1537  wral 3067  {crab 3443  cun 3974  cin 3975  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-nan 1489  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-nul 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator