| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > undisjrab | Structured version Visualization version GIF version | ||
| Description: Union of two disjoint restricted class abstractions; compare unrab 4264. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
| Ref | Expression |
|---|---|
| undisjrab | ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4337 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓)) | |
| 2 | df-nan 1493 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | nanorxor 44423 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) | |
| 4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
| 5 | 4 | ralbii 3079 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
| 6 | rabbi 3426 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓)) ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) | |
| 7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
| 8 | inrab 4265 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | |
| 9 | 8 | eqeq1i 2738 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ∅) |
| 10 | unrab 4264 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | |
| 11 | 10 | eqeq1i 2738 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)} ↔ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
| 12 | 7, 9, 11 | 3bitr4i 303 | 1 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ⊼ wnan 1492 ⊻ wxo 1512 = wceq 1541 ∀wral 3048 {crab 3396 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-nan 1493 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-nul 4283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |