MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth Structured version   Visualization version   GIF version

Theorem canth 6880
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e. no function can map 𝐴 it onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8401. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 6881 for a counterexample. (Use nex 1844 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypothesis
Ref Expression
canth.1 𝐴 ∈ V
Assertion
Ref Expression
canth ¬ 𝐹:𝐴onto→𝒫 𝐴

Proof of Theorem canth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4 𝐴 ∈ V
2 ssrab2 3908 . . . 4 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ⊆ 𝐴
31, 2elpwi2 5063 . . 3 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ 𝒫 𝐴
4 forn 6369 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴)
53, 4syl5eleqr 2866 . 2 (𝐹:𝐴onto→𝒫 𝐴 → {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
6 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
7 fveq2 6446 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
86, 7eleq12d 2853 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑦)))
98notbid 310 . . . . . . . 8 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹𝑥) ↔ ¬ 𝑦 ∈ (𝐹𝑦)))
109elrab 3572 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝐹𝑦)))
1110baibr 532 . . . . . 6 (𝑦𝐴 → (¬ 𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
12 nbbn 375 . . . . . 6 ((¬ 𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}) ↔ ¬ (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1311, 12sylib 210 . . . . 5 (𝑦𝐴 → ¬ (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
14 eleq2 2848 . . . . 5 ((𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} → (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1513, 14nsyl 138 . . . 4 (𝑦𝐴 → ¬ (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)})
1615nrex 3181 . . 3 ¬ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}
17 fofn 6368 . . . 4 (𝐹:𝐴onto→𝒫 𝐴𝐹 Fn 𝐴)
18 fvelrnb 6503 . . . 4 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1917, 18syl 17 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
2016, 19mtbiri 319 . 2 (𝐹:𝐴onto→𝒫 𝐴 → ¬ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
215, 20pm2.65i 186 1 ¬ 𝐹:𝐴onto→𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198   = wceq 1601  wcel 2107  wrex 3091  {crab 3094  Vcvv 3398  𝒫 cpw 4379  ran crn 5356   Fn wfn 6130  ontowfo 6133  cfv 6135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fo 6141  df-fv 6143
This theorem is referenced by:  canth2  8401  canthwdom  8773
  Copyright terms: Public domain W3C validator