Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > canth | Structured version Visualization version GIF version |
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8866. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7210 for a counterexample. (Use nex 1804 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
canth.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
canth | ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ssrab2 4009 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ⊆ 𝐴 | |
3 | 1, 2 | elpwi2 5265 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ 𝒫 𝐴 |
4 | forn 6675 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴) | |
5 | 3, 4 | eleqtrrid 2846 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
7 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
8 | 6, 7 | eleq12d 2833 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑦))) |
9 | 8 | notbid 317 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹‘𝑥) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
10 | 9 | elrab 3617 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
11 | 10 | baibr 536 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (¬ 𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
12 | nbbn 384 | . . . . . 6 ⊢ ((¬ 𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) ↔ ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
13 | 11, 12 | sylib 217 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
14 | eleq2 2827 | . . . . 5 ⊢ ((𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} → (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
15 | 13, 14 | nsyl 140 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
16 | 15 | nrex 3196 | . . 3 ⊢ ¬ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} |
17 | fofn 6674 | . . . 4 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → 𝐹 Fn 𝐴) | |
18 | fvelrnb 6812 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
20 | 16, 19 | mtbiri 326 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
21 | 5, 20 | pm2.65i 193 | 1 ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 Vcvv 3422 𝒫 cpw 4530 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 |
This theorem is referenced by: canth2 8866 canthwdom 9268 |
Copyright terms: Public domain | W3C validator |