MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth Structured version   Visualization version   GIF version

Theorem canth 7124
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8720. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7125 for a counterexample. (Use nex 1807 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypothesis
Ref Expression
canth.1 𝐴 ∈ V
Assertion
Ref Expression
canth ¬ 𝐹:𝐴onto→𝒫 𝐴

Proof of Theorem canth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4 𝐴 ∈ V
2 ssrab2 3969 . . . 4 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ⊆ 𝐴
31, 2elpwi2 5214 . . 3 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ 𝒫 𝐴
4 forn 6595 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴)
53, 4eleqtrrid 2840 . 2 (𝐹:𝐴onto→𝒫 𝐴 → {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
6 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
7 fveq2 6674 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
86, 7eleq12d 2827 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑦)))
98notbid 321 . . . . . . . 8 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹𝑥) ↔ ¬ 𝑦 ∈ (𝐹𝑦)))
109elrab 3588 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝐹𝑦)))
1110baibr 540 . . . . . 6 (𝑦𝐴 → (¬ 𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
12 nbbn 388 . . . . . 6 ((¬ 𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}) ↔ ¬ (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1311, 12sylib 221 . . . . 5 (𝑦𝐴 → ¬ (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
14 eleq2 2821 . . . . 5 ((𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} → (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1513, 14nsyl 142 . . . 4 (𝑦𝐴 → ¬ (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)})
1615nrex 3179 . . 3 ¬ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}
17 fofn 6594 . . . 4 (𝐹:𝐴onto→𝒫 𝐴𝐹 Fn 𝐴)
18 fvelrnb 6730 . . . 4 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1917, 18syl 17 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
2016, 19mtbiri 330 . 2 (𝐹:𝐴onto→𝒫 𝐴 → ¬ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
215, 20pm2.65i 197 1 ¬ 𝐹:𝐴onto→𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1542  wcel 2114  wrex 3054  {crab 3057  Vcvv 3398  𝒫 cpw 4488  ran crn 5526   Fn wfn 6334  ontowfo 6337  cfv 6339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fo 6345  df-fv 6347
This theorem is referenced by:  canth2  8720  canthwdom  9116
  Copyright terms: Public domain W3C validator