Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > canth | Structured version Visualization version GIF version |
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8720. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7125 for a counterexample. (Use nex 1807 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
canth.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
canth | ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ssrab2 3969 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ⊆ 𝐴 | |
3 | 1, 2 | elpwi2 5214 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ 𝒫 𝐴 |
4 | forn 6595 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴) | |
5 | 3, 4 | eleqtrrid 2840 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
7 | fveq2 6674 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
8 | 6, 7 | eleq12d 2827 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑦))) |
9 | 8 | notbid 321 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹‘𝑥) ↔ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
10 | 9 | elrab 3588 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ (𝐹‘𝑦))) |
11 | 10 | baibr 540 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (¬ 𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
12 | nbbn 388 | . . . . . 6 ⊢ ((¬ 𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) ↔ ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
13 | 11, 12 | sylib 221 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
14 | eleq2 2821 | . . . . 5 ⊢ ((𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} → (𝑦 ∈ (𝐹‘𝑦) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
15 | 13, 14 | nsyl 142 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ¬ (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)}) |
16 | 15 | nrex 3179 | . . 3 ⊢ ¬ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} |
17 | fofn 6594 | . . . 4 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → 𝐹 Fn 𝐴) | |
18 | fvelrnb 6730 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)})) |
20 | 16, 19 | mtbiri 330 | . 2 ⊢ (𝐹:𝐴–onto→𝒫 𝐴 → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ (𝐹‘𝑥)} ∈ ran 𝐹) |
21 | 5, 20 | pm2.65i 197 | 1 ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 {crab 3057 Vcvv 3398 𝒫 cpw 4488 ran crn 5526 Fn wfn 6334 –onto→wfo 6337 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fo 6345 df-fv 6347 |
This theorem is referenced by: canth2 8720 canthwdom 9116 |
Copyright terms: Public domain | W3C validator |