MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextltlem Structured version   Visualization version   GIF version

Theorem qextltlem 13098
Description: Lemma for qextlt 13099 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextltlem ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qextltlem
StepHypRef Expression
1 qbtwnxr 13096 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
213expia 1121 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3 simprl 770 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐴 < 𝑥)
4 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐴 ∈ ℝ*)
5 qre 12848 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
65rexrd 11159 . . . . . . . . . . 11 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
76ad2antlr 727 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 ∈ ℝ*)
8 xrltnle 11176 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 < 𝑥 ↔ ¬ 𝑥𝐴))
94, 7, 8syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝐴 < 𝑥 ↔ ¬ 𝑥𝐴))
103, 9mpbid 232 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ 𝑥𝐴)
11 xrltle 13045 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴𝑥𝐴))
127, 4, 11syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 < 𝐴𝑥𝐴))
1310, 12mtod 198 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ 𝑥 < 𝐴)
14 simprr 772 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 < 𝐵)
1513, 142thd 265 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ 𝑥 < 𝐴𝑥 < 𝐵))
16 nbbn 383 . . . . . 6 ((¬ 𝑥 < 𝐴𝑥 < 𝐵) ↔ ¬ (𝑥 < 𝐴𝑥 < 𝐵))
1715, 16sylib 218 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ (𝑥 < 𝐴𝑥 < 𝐵))
18 simpllr 775 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐵 ∈ ℝ*)
197, 18, 14xrltled 13046 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥𝐵)
2010, 192thd 265 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ 𝑥𝐴𝑥𝐵))
21 nbbn 383 . . . . . 6 ((¬ 𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
2220, 21sylib 218 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ (𝑥𝐴𝑥𝐵))
2317, 22jca 511 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)))
2423ex 412 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < 𝐵) → (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
2524reximdva 3145 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
262, 25syld 47 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  wrex 3056   class class class wbr 5091  *cxr 11142   < clt 11143  cle 11144  cq 12843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844
This theorem is referenced by:  qextlt  13099  qextle  13100
  Copyright terms: Public domain W3C validator