Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qextltlem | Structured version Visualization version GIF version |
Description: Lemma for qextlt 12679 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
qextltlem | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qbtwnxr 12676 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
2 | 1 | 3expia 1122 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
3 | simprl 771 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 < 𝑥) | |
4 | simplll 775 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 ∈ ℝ*) | |
5 | qre 12435 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
6 | 5 | rexrd 10769 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*) |
7 | 6 | ad2antlr 727 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ ℝ*) |
8 | xrltnle 10786 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴)) | |
9 | 4, 7, 8 | syl2anc 587 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴)) |
10 | 3, 9 | mpbid 235 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ 𝑥 ≤ 𝐴) |
11 | xrltle 12625 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 < 𝐴 → 𝑥 ≤ 𝐴)) | |
12 | 7, 4, 11 | syl2anc 587 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 < 𝐴 → 𝑥 ≤ 𝐴)) |
13 | 10, 12 | mtod 201 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ 𝑥 < 𝐴) |
14 | simprr 773 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 < 𝐵) | |
15 | 13, 14 | 2thd 268 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
16 | nbbn 388 | . . . . . 6 ⊢ ((¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ↔ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
17 | 15, 16 | sylib 221 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
18 | simpllr 776 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐵 ∈ ℝ*) | |
19 | 7, 18, 14 | xrltled 12626 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ≤ 𝐵) |
20 | 10, 19 | 2thd 268 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
21 | nbbn 388 | . . . . . 6 ⊢ ((¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) ↔ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
22 | 20, 21 | sylib 221 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
23 | 17, 22 | jca 515 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
24 | 23 | ex 416 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
25 | 24 | reximdva 3184 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
26 | 2, 25 | syld 47 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 ∃wrex 3054 class class class wbr 5030 ℝ*cxr 10752 < clt 10753 ≤ cle 10754 ℚcq 12430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 df-q 12431 |
This theorem is referenced by: qextlt 12679 qextle 12680 |
Copyright terms: Public domain | W3C validator |