| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qextltlem | Structured version Visualization version GIF version | ||
| Description: Lemma for qextlt 13104 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| qextltlem | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qbtwnxr 13101 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
| 2 | 1 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 3 | simprl 770 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 < 𝑥) | |
| 4 | simplll 774 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 ∈ ℝ*) | |
| 5 | qre 12853 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 6 | 5 | rexrd 11169 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*) |
| 7 | 6 | ad2antlr 727 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ ℝ*) |
| 8 | xrltnle 11186 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴)) | |
| 9 | 4, 7, 8 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴)) |
| 10 | 3, 9 | mpbid 232 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ 𝑥 ≤ 𝐴) |
| 11 | xrltle 13050 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 < 𝐴 → 𝑥 ≤ 𝐴)) | |
| 12 | 7, 4, 11 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 < 𝐴 → 𝑥 ≤ 𝐴)) |
| 13 | 10, 12 | mtod 198 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ 𝑥 < 𝐴) |
| 14 | simprr 772 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 < 𝐵) | |
| 15 | 13, 14 | 2thd 265 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
| 16 | nbbn 383 | . . . . . 6 ⊢ ((¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ↔ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
| 17 | 15, 16 | sylib 218 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
| 18 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐵 ∈ ℝ*) | |
| 19 | 7, 18, 14 | xrltled 13051 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ≤ 𝐵) |
| 20 | 10, 19 | 2thd 265 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
| 21 | nbbn 383 | . . . . . 6 ⊢ ((¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) ↔ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
| 22 | 20, 21 | sylib 218 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
| 23 | 17, 22 | jca 511 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 24 | 23 | ex 412 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
| 25 | 24 | reximdva 3146 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
| 26 | 2, 25 | syld 47 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 ℚcq 12848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 |
| This theorem is referenced by: qextlt 13104 qextle 13105 |
| Copyright terms: Public domain | W3C validator |