![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qextltlem | Structured version Visualization version GIF version |
Description: Lemma for qextlt 13182 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
qextltlem | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qbtwnxr 13179 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
2 | 1 | 3expia 1122 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
3 | simprl 770 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 < 𝑥) | |
4 | simplll 774 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 ∈ ℝ*) | |
5 | qre 12937 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
6 | 5 | rexrd 11264 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*) |
7 | 6 | ad2antlr 726 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ ℝ*) |
8 | xrltnle 11281 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴)) | |
9 | 4, 7, 8 | syl2anc 585 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴)) |
10 | 3, 9 | mpbid 231 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ 𝑥 ≤ 𝐴) |
11 | xrltle 13128 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 < 𝐴 → 𝑥 ≤ 𝐴)) | |
12 | 7, 4, 11 | syl2anc 585 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 < 𝐴 → 𝑥 ≤ 𝐴)) |
13 | 10, 12 | mtod 197 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ 𝑥 < 𝐴) |
14 | simprr 772 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 < 𝐵) | |
15 | 13, 14 | 2thd 265 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
16 | nbbn 385 | . . . . . 6 ⊢ ((¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ↔ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
17 | 15, 16 | sylib 217 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
18 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐵 ∈ ℝ*) | |
19 | 7, 18, 14 | xrltled 13129 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ≤ 𝐵) |
20 | 10, 19 | 2thd 265 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
21 | nbbn 385 | . . . . . 6 ⊢ ((¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) ↔ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
22 | 20, 21 | sylib 217 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
23 | 17, 22 | jca 513 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
24 | 23 | ex 414 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
25 | 24 | reximdva 3169 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
26 | 2, 25 | syld 47 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 class class class wbr 5149 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 ℚcq 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 |
This theorem is referenced by: qextlt 13182 qextle 13183 |
Copyright terms: Public domain | W3C validator |