MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextltlem Structured version   Visualization version   GIF version

Theorem qextltlem 13187
Description: Lemma for qextlt 13188 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextltlem ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qextltlem
StepHypRef Expression
1 qbtwnxr 13185 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
213expia 1118 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3 simprl 768 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐴 < 𝑥)
4 simplll 772 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐴 ∈ ℝ*)
5 qre 12941 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
65rexrd 11268 . . . . . . . . . . 11 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
76ad2antlr 724 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 ∈ ℝ*)
8 xrltnle 11285 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 < 𝑥 ↔ ¬ 𝑥𝐴))
94, 7, 8syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝐴 < 𝑥 ↔ ¬ 𝑥𝐴))
103, 9mpbid 231 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ 𝑥𝐴)
11 xrltle 13134 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴𝑥𝐴))
127, 4, 11syl2anc 583 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 < 𝐴𝑥𝐴))
1310, 12mtod 197 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ 𝑥 < 𝐴)
14 simprr 770 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 < 𝐵)
1513, 142thd 265 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ 𝑥 < 𝐴𝑥 < 𝐵))
16 nbbn 383 . . . . . 6 ((¬ 𝑥 < 𝐴𝑥 < 𝐵) ↔ ¬ (𝑥 < 𝐴𝑥 < 𝐵))
1715, 16sylib 217 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ (𝑥 < 𝐴𝑥 < 𝐵))
18 simpllr 773 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐵 ∈ ℝ*)
197, 18, 14xrltled 13135 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥𝐵)
2010, 192thd 265 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ 𝑥𝐴𝑥𝐵))
21 nbbn 383 . . . . . 6 ((¬ 𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
2220, 21sylib 217 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ (𝑥𝐴𝑥𝐵))
2317, 22jca 511 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)))
2423ex 412 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < 𝐵) → (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
2524reximdva 3162 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
262, 25syld 47 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  wrex 3064   class class class wbr 5141  *cxr 11251   < clt 11252  cle 11253  cq 12936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937
This theorem is referenced by:  qextlt  13188  qextle  13189
  Copyright terms: Public domain W3C validator