MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextltlem Structured version   Visualization version   GIF version

Theorem qextltlem 13241
Description: Lemma for qextlt 13242 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextltlem ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qextltlem
StepHypRef Expression
1 qbtwnxr 13239 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
213expia 1120 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3 simprl 771 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐴 < 𝑥)
4 simplll 775 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐴 ∈ ℝ*)
5 qre 12993 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
65rexrd 11309 . . . . . . . . . . 11 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
76ad2antlr 727 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 ∈ ℝ*)
8 xrltnle 11326 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 < 𝑥 ↔ ¬ 𝑥𝐴))
94, 7, 8syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝐴 < 𝑥 ↔ ¬ 𝑥𝐴))
103, 9mpbid 232 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ 𝑥𝐴)
11 xrltle 13188 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴𝑥𝐴))
127, 4, 11syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 < 𝐴𝑥𝐴))
1310, 12mtod 198 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ 𝑥 < 𝐴)
14 simprr 773 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥 < 𝐵)
1513, 142thd 265 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ 𝑥 < 𝐴𝑥 < 𝐵))
16 nbbn 383 . . . . . 6 ((¬ 𝑥 < 𝐴𝑥 < 𝐵) ↔ ¬ (𝑥 < 𝐴𝑥 < 𝐵))
1715, 16sylib 218 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ (𝑥 < 𝐴𝑥 < 𝐵))
18 simpllr 776 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝐵 ∈ ℝ*)
197, 18, 14xrltled 13189 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → 𝑥𝐵)
2010, 192thd 265 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ 𝑥𝐴𝑥𝐵))
21 nbbn 383 . . . . . 6 ((¬ 𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
2220, 21sylib 218 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ¬ (𝑥𝐴𝑥𝐵))
2317, 22jca 511 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)))
2423ex 412 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < 𝐵) → (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
2524reximdva 3166 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
262, 25syld 47 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2106  wrex 3068   class class class wbr 5148  *cxr 11292   < clt 11293  cle 11294  cq 12988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989
This theorem is referenced by:  qextlt  13242  qextle  13243
  Copyright terms: Public domain W3C validator