Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrpssN Structured version   Visualization version   GIF version

Theorem lkrpssN 35119
Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrpss.f 𝐹 = (LFnl‘𝑊)
lkrpss.k 𝐾 = (LKer‘𝑊)
lkrpss.d 𝐷 = (LDual‘𝑊)
lkrpss.o 0 = (0g𝐷)
lkrpss.w (𝜑𝑊 ∈ LVec)
lkrpss.g (𝜑𝐺𝐹)
lkrpss.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrpssN (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))

Proof of Theorem lkrpssN
StepHypRef Expression
1 df-pss 3748 . . 3 ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
2 simpr 477 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (𝐾𝐻))
3 eqid 2765 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
4 lkrpss.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
5 lkrpss.k . . . . . . . . . 10 𝐾 = (LKer‘𝑊)
6 lkrpss.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
7 lveclmod 19378 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
9 lkrpss.h . . . . . . . . . 10 (𝜑𝐻𝐹)
103, 4, 5, 8, 9lkrssv 35052 . . . . . . . . 9 (𝜑 → (𝐾𝐻) ⊆ (Base‘𝑊))
1110adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐻) ⊆ (Base‘𝑊))
122, 11psssstrd 3877 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (Base‘𝑊))
1312pssned 3866 . . . . . 6 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ≠ (Base‘𝑊))
141, 13sylan2br 588 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐺) ≠ (Base‘𝑊))
15 simplr 785 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
16 eqid 2765 . . . . . . . . . . 11 (LSHyp‘𝑊) = (LSHyp‘𝑊)
176ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → 𝑊 ∈ LVec)
18 simpr 477 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
19 simplr 785 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
2010ad3antrrr 721 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ⊆ (Base‘𝑊))
21 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) = (Base‘𝑊))
22 simpllr 793 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
2321, 22eqsstr3d 3800 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (Base‘𝑊) ⊆ (𝐾𝐻))
2420, 23eqssd 3778 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) = (Base‘𝑊))
253, 16, 4, 5, 6, 9lkrshp4 35064 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2625ad3antrrr 721 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2726necon1bbid 2976 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
2824, 27mpbird 248 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
2919, 28pm2.21dd 186 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
30 lkrpss.g . . . . . . . . . . . . . 14 (𝜑𝐺𝐹)
313, 16, 4, 5, 6, 30lkrshpor 35063 . . . . . . . . . . . . 13 (𝜑 → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3231ad2antrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3318, 29, 32mpjaodan 981 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
34 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
3516, 17, 33, 34lshpcmp 34944 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ (𝐾𝐺) = (𝐾𝐻)))
3615, 35mpbid 223 . . . . . . . . 9 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) = (𝐾𝐻))
3736ex 401 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐻) ∈ (LSHyp‘𝑊) → (𝐾𝐺) = (𝐾𝐻)))
3837necon3ad 2950 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐺) ≠ (𝐾𝐻) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
3938impr 446 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
4025necon1bbid 2976 . . . . . . 7 (𝜑 → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4140adantr 472 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4239, 41mpbid 223 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐻) = (Base‘𝑊))
4314, 42jca 507 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)))
443, 4, 5, 8, 30lkrssv 35052 . . . . . . 7 (𝜑 → (𝐾𝐺) ⊆ (Base‘𝑊))
4544adantr 472 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (Base‘𝑊))
46 simprr 789 . . . . . . 7 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐻) = (Base‘𝑊))
4746eqcomd 2771 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (Base‘𝑊) = (𝐾𝐻))
4845, 47sseqtrd 3801 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (𝐾𝐻))
49 simprl 787 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (Base‘𝑊))
5049, 47neeqtrd 3006 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (𝐾𝐻))
5148, 50jca 507 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
5243, 51impbida 835 . . 3 (𝜑 → (((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
531, 52syl5bb 274 . 2 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
54 lkrpss.d . . . . 5 𝐷 = (LDual‘𝑊)
55 lkrpss.o . . . . 5 0 = (0g𝐷)
563, 4, 5, 54, 55, 8, 30lkr0f2 35117 . . . 4 (𝜑 → ((𝐾𝐺) = (Base‘𝑊) ↔ 𝐺 = 0 ))
5756necon3bid 2981 . . 3 (𝜑 → ((𝐾𝐺) ≠ (Base‘𝑊) ↔ 𝐺0 ))
583, 4, 5, 54, 55, 8, 9lkr0f2 35117 . . 3 (𝜑 → ((𝐾𝐻) = (Base‘𝑊) ↔ 𝐻 = 0 ))
5957, 58anbi12d 624 . 2 (𝜑 → (((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)) ↔ (𝐺0𝐻 = 0 )))
6053, 59bitrd 270 1 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wss 3732  wpss 3733  cfv 6068  Basecbs 16130  0gc0g 16366  LModclmod 19132  LVecclvec 19374  LSHypclsh 34931  LFnlclfn 35013  LKerclk 35041  LDualcld 35079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-subg 17855  df-cntz 18013  df-lsm 18315  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lvec 19375  df-lshyp 34933  df-lfl 35014  df-lkr 35042  df-ldual 35080
This theorem is referenced by:  lkrss2N  35125  lkreqN  35126
  Copyright terms: Public domain W3C validator