Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrpssN Structured version   Visualization version   GIF version

Theorem lkrpssN 39102
Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrpss.f 𝐹 = (LFnl‘𝑊)
lkrpss.k 𝐾 = (LKer‘𝑊)
lkrpss.d 𝐷 = (LDual‘𝑊)
lkrpss.o 0 = (0g𝐷)
lkrpss.w (𝜑𝑊 ∈ LVec)
lkrpss.g (𝜑𝐺𝐹)
lkrpss.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrpssN (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))

Proof of Theorem lkrpssN
StepHypRef Expression
1 df-pss 3944 . . 3 ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
2 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (𝐾𝐻))
3 eqid 2734 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
4 lkrpss.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
5 lkrpss.k . . . . . . . . . 10 𝐾 = (LKer‘𝑊)
6 lkrpss.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
7 lveclmod 21049 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
9 lkrpss.h . . . . . . . . . 10 (𝜑𝐻𝐹)
103, 4, 5, 8, 9lkrssv 39035 . . . . . . . . 9 (𝜑 → (𝐾𝐻) ⊆ (Base‘𝑊))
1110adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐻) ⊆ (Base‘𝑊))
122, 11psssstrd 4085 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (Base‘𝑊))
1312pssned 4074 . . . . . 6 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ≠ (Base‘𝑊))
141, 13sylan2br 595 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐺) ≠ (Base‘𝑊))
15 simplr 768 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
16 eqid 2734 . . . . . . . . . . 11 (LSHyp‘𝑊) = (LSHyp‘𝑊)
176ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → 𝑊 ∈ LVec)
18 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
19 simplr 768 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
2010ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ⊆ (Base‘𝑊))
21 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) = (Base‘𝑊))
22 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
2321, 22eqsstrrd 3992 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (Base‘𝑊) ⊆ (𝐾𝐻))
2420, 23eqssd 3974 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) = (Base‘𝑊))
253, 16, 4, 5, 6, 9lkrshp4 39047 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2625ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2726necon1bbid 2970 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
2824, 27mpbird 257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
2919, 28pm2.21dd 195 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
30 lkrpss.g . . . . . . . . . . . . . 14 (𝜑𝐺𝐹)
313, 16, 4, 5, 6, 30lkrshpor 39046 . . . . . . . . . . . . 13 (𝜑 → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3231ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3318, 29, 32mpjaodan 960 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
34 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
3516, 17, 33, 34lshpcmp 38927 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ (𝐾𝐺) = (𝐾𝐻)))
3615, 35mpbid 232 . . . . . . . . 9 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) = (𝐾𝐻))
3736ex 412 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐻) ∈ (LSHyp‘𝑊) → (𝐾𝐺) = (𝐾𝐻)))
3837necon3ad 2944 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐺) ≠ (𝐾𝐻) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
3938impr 454 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
4025necon1bbid 2970 . . . . . . 7 (𝜑 → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4140adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4239, 41mpbid 232 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐻) = (Base‘𝑊))
4314, 42jca 511 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)))
443, 4, 5, 8, 30lkrssv 39035 . . . . . . 7 (𝜑 → (𝐾𝐺) ⊆ (Base‘𝑊))
4544adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (Base‘𝑊))
46 simprr 772 . . . . . . 7 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐻) = (Base‘𝑊))
4746eqcomd 2740 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (Base‘𝑊) = (𝐾𝐻))
4845, 47sseqtrd 3993 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (𝐾𝐻))
49 simprl 770 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (Base‘𝑊))
5049, 47neeqtrd 3000 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (𝐾𝐻))
5148, 50jca 511 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
5243, 51impbida 800 . . 3 (𝜑 → (((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
531, 52bitrid 283 . 2 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
54 lkrpss.d . . . . 5 𝐷 = (LDual‘𝑊)
55 lkrpss.o . . . . 5 0 = (0g𝐷)
563, 4, 5, 54, 55, 8, 30lkr0f2 39100 . . . 4 (𝜑 → ((𝐾𝐺) = (Base‘𝑊) ↔ 𝐺 = 0 ))
5756necon3bid 2975 . . 3 (𝜑 → ((𝐾𝐺) ≠ (Base‘𝑊) ↔ 𝐺0 ))
583, 4, 5, 54, 55, 8, 9lkr0f2 39100 . . 3 (𝜑 → ((𝐾𝐻) = (Base‘𝑊) ↔ 𝐻 = 0 ))
5957, 58anbi12d 632 . 2 (𝜑 → (((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)) ↔ (𝐺0𝐻 = 0 )))
6053, 59bitrd 279 1 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  wss 3924  wpss 3925  cfv 6527  Basecbs 17213  0gc0g 17438  LModclmod 20802  LVecclvec 21045  LSHypclsh 38914  LFnlclfn 38996  LKerclk 39024  LDualcld 39062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-om 7856  df-1st 7982  df-2nd 7983  df-tpos 8219  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-0g 17440  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-subg 19091  df-cntz 19285  df-lsm 19602  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20282  df-dvdsr 20302  df-unit 20303  df-invr 20333  df-drng 20676  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046  df-lshyp 38916  df-lfl 38997  df-lkr 39025  df-ldual 39063
This theorem is referenced by:  lkrss2N  39108  lkreqN  39109
  Copyright terms: Public domain W3C validator