Proof of Theorem lkrpssN
Step | Hyp | Ref
| Expression |
1 | | df-pss 3863 |
. . 3
⊢ ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) |
2 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) → (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) |
3 | | eqid 2739 |
. . . . . . . . . 10
⊢
(Base‘𝑊) =
(Base‘𝑊) |
4 | | lkrpss.f |
. . . . . . . . . 10
⊢ 𝐹 = (LFnl‘𝑊) |
5 | | lkrpss.k |
. . . . . . . . . 10
⊢ 𝐾 = (LKer‘𝑊) |
6 | | lkrpss.w |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ LVec) |
7 | | lveclmod 20000 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ LMod) |
9 | | lkrpss.h |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
10 | 3, 4, 5, 8, 9 | lkrssv 36756 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘𝐻) ⊆ (Base‘𝑊)) |
11 | 10 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) → (𝐾‘𝐻) ⊆ (Base‘𝑊)) |
12 | 2, 11 | psssstrd 4001 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) → (𝐾‘𝐺) ⊊ (Base‘𝑊)) |
13 | 12 | pssned 3990 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊊ (𝐾‘𝐻)) → (𝐾‘𝐺) ≠ (Base‘𝑊)) |
14 | 1, 13 | sylan2br 598 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) → (𝐾‘𝐺) ≠ (Base‘𝑊)) |
15 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) |
16 | | eqid 2739 |
. . . . . . . . . . 11
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
17 | 6 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → 𝑊 ∈ LVec) |
18 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) ∈ (LSHyp‘𝑊)) → (𝐾‘𝐺) ∈ (LSHyp‘𝑊)) |
19 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) |
20 | 10 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (𝐾‘𝐻) ⊆ (Base‘𝑊)) |
21 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (𝐾‘𝐺) = (Base‘𝑊)) |
22 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) |
23 | 21, 22 | eqsstrrd 3917 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (Base‘𝑊) ⊆ (𝐾‘𝐻)) |
24 | 20, 23 | eqssd 3895 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (𝐾‘𝐻) = (Base‘𝑊)) |
25 | 3, 16, 4, 5, 6, 9 | lkrshp4 36768 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐾‘𝐻) ≠ (Base‘𝑊) ↔ (𝐾‘𝐻) ∈ (LSHyp‘𝑊))) |
26 | 25 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → ((𝐾‘𝐻) ≠ (Base‘𝑊) ↔ (𝐾‘𝐻) ∈ (LSHyp‘𝑊))) |
27 | 26 | necon1bbid 2974 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (¬ (𝐾‘𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾‘𝐻) = (Base‘𝑊))) |
28 | 24, 27 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → ¬ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) |
29 | 19, 28 | pm2.21dd 198 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾‘𝐺) = (Base‘𝑊)) → (𝐾‘𝐺) ∈ (LSHyp‘𝑊)) |
30 | | lkrpss.g |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
31 | 3, 16, 4, 5, 6, 30 | lkrshpor 36767 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐾‘𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾‘𝐺) = (Base‘𝑊))) |
32 | 31 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾‘𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾‘𝐺) = (Base‘𝑊))) |
33 | 18, 29, 32 | mpjaodan 958 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → (𝐾‘𝐺) ∈ (LSHyp‘𝑊)) |
34 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) |
35 | 16, 17, 33, 34 | lshpcmp 36648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ (𝐾‘𝐺) = (𝐾‘𝐻))) |
36 | 15, 35 | mpbid 235 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) ∧ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) → (𝐾‘𝐺) = (𝐾‘𝐻)) |
37 | 36 | ex 416 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) → ((𝐾‘𝐻) ∈ (LSHyp‘𝑊) → (𝐾‘𝐺) = (𝐾‘𝐻))) |
38 | 37 | necon3ad 2948 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) → ((𝐾‘𝐺) ≠ (𝐾‘𝐻) → ¬ (𝐾‘𝐻) ∈ (LSHyp‘𝑊))) |
39 | 38 | impr 458 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) → ¬ (𝐾‘𝐻) ∈ (LSHyp‘𝑊)) |
40 | 25 | necon1bbid 2974 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝐾‘𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾‘𝐻) = (Base‘𝑊))) |
41 | 40 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) → (¬ (𝐾‘𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾‘𝐻) = (Base‘𝑊))) |
42 | 39, 41 | mpbid 235 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) → (𝐾‘𝐻) = (Base‘𝑊)) |
43 | 14, 42 | jca 515 |
. . . 4
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) → ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) |
44 | 3, 4, 5, 8, 30 | lkrssv 36756 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘𝐺) ⊆ (Base‘𝑊)) |
45 | 44 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → (𝐾‘𝐺) ⊆ (Base‘𝑊)) |
46 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → (𝐾‘𝐻) = (Base‘𝑊)) |
47 | 46 | eqcomd 2745 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → (Base‘𝑊) = (𝐾‘𝐻)) |
48 | 45, 47 | sseqtrd 3918 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → (𝐾‘𝐺) ⊆ (𝐾‘𝐻)) |
49 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → (𝐾‘𝐺) ≠ (Base‘𝑊)) |
50 | 49, 47 | neeqtrd 3004 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → (𝐾‘𝐺) ≠ (𝐾‘𝐻)) |
51 | 48, 50 | jca 515 |
. . . 4
⊢ ((𝜑 ∧ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊))) → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻))) |
52 | 43, 51 | impbida 801 |
. . 3
⊢ (𝜑 → (((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ∧ (𝐾‘𝐺) ≠ (𝐾‘𝐻)) ↔ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊)))) |
53 | 1, 52 | syl5bb 286 |
. 2
⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ ((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊)))) |
54 | | lkrpss.d |
. . . . 5
⊢ 𝐷 = (LDual‘𝑊) |
55 | | lkrpss.o |
. . . . 5
⊢ 0 =
(0g‘𝐷) |
56 | 3, 4, 5, 54, 55, 8, 30 | lkr0f2 36821 |
. . . 4
⊢ (𝜑 → ((𝐾‘𝐺) = (Base‘𝑊) ↔ 𝐺 = 0 )) |
57 | 56 | necon3bid 2979 |
. . 3
⊢ (𝜑 → ((𝐾‘𝐺) ≠ (Base‘𝑊) ↔ 𝐺 ≠ 0 )) |
58 | 3, 4, 5, 54, 55, 8, 9 | lkr0f2 36821 |
. . 3
⊢ (𝜑 → ((𝐾‘𝐻) = (Base‘𝑊) ↔ 𝐻 = 0 )) |
59 | 57, 58 | anbi12d 634 |
. 2
⊢ (𝜑 → (((𝐾‘𝐺) ≠ (Base‘𝑊) ∧ (𝐾‘𝐻) = (Base‘𝑊)) ↔ (𝐺 ≠ 0 ∧ 𝐻 = 0 ))) |
60 | 53, 59 | bitrd 282 |
1
⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ (𝐺 ≠ 0 ∧ 𝐻 = 0 ))) |